Matching Items (2)
Filtering by

Clear all filters

151279-Thumbnail Image.png
Description
The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes

The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the time of formation. The scarcity of angrite samples made it difficult to conduct comprehensive investigations into the formation history of this unique meteorite group. However, a dramatic increase in the number of angrites recovered in recent years presents the opportunity to expand our understanding of their petrogenesis, as well as further refine our knowledge of the initial isotopic abundances in the early Solar System as recorded by their isotopic systematics. Using a combination of geochemical tools (radiogenic isotope chronometers and trace element chemistry), I have investigated the petrogenetic history of a group of four angrites that sample a range of formation conditions (cooling histories) and crystallization ages. Through isotope ratio measurements, I have examined a comprehensive set of long- and short-lived radiogenic isotope systems (26Al-26Mg, 87Rb-87Sr, 146Sm-142Nd, 147Sm-143Nd, and 176Lu-176Hf) within these four angrites. The results of these measurements provide information regarding crystallization ages, as well as revised estimates for the initial isotopic abundances of several key elements in the early Solar System. The determination of trace element concentrations in individual mineral phases, as well as bulk rock samples, provides important constraints on magmatic processes occurring on the angrite parent body. The measured trace element abundances are used to estimate the composition of the parent melts of individual angrites, examine crystallization conditions, and investigate possible geochemical affinities between various angrites. The new geochemical and isotopic measurements presented here significantly expand our understanding of the geochemical conditions found on the angrite parent body and the environment in which these meteorites formed.
ContributorsSanborn, Matthew E (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda (Committee member) / Williams, Lynda (Committee member) / Carlson, Richard (Committee member) / Arizona State University (Publisher)
Created2012
155222-Thumbnail Image.png
Description
The beginning of our Solar System, including events such as the formation of the first solids as well as the accretion and differentiation of planetary bodies, is recorded in meteoritic material. This record can be deciphered using petrographic, geochemical and isotopic investigations of different classes of meteorites and their components.

The beginning of our Solar System, including events such as the formation of the first solids as well as the accretion and differentiation of planetary bodies, is recorded in meteoritic material. This record can be deciphered using petrographic, geochemical and isotopic investigations of different classes of meteorites and their components. In this dissertation, I have investigated a variety of isotope systematics in chondritic and achondritic meteorites to understand processes that have shaped our Solar System. Specifically, the investigations conducted here are in two main areas: 1) Hydrogen isotope systematics in a meteorite representing the freshest known sample of the martian crust, and 2) Isotopic studies (specifically relating to high resolution chronology, nucleosynthetic anomalies and mass-dependent fractionations) in calcium-aluminum-rich inclusions, which are thought to be the earliest-formed solids in the Solar System. Chapter 1 of this dissertation presents a review of the hydrogen isotopic compositions of various planetary bodies and reservoirs in the Solar System, which could serve as tracers for the volatile sources. Chapter 2 focuses on an investigation of the hydrogen isotopic systematics in the freshest martian meteorite fall, Tissint, using the Cameca IMS-6f secondary ion mass spectrometer (SIMS). These first two chapters comprise the first part of this dissertation. The second part is comprised of chapters 3 through 6 and is focused on isotopic analyses of Calcium-Aluminum-rich Inclusions (CAIs). Chapter 3 is a review of CAIs, which record some of the earliest processes that occurred in the solar nebula. Chapter 4 presents the results of an investigation of the 26Al-26Mg short-lived chronometer (half-life ~0.72 Ma) in two CAIs and their Wark-Lovering (WL) rims from a CV3 carbonaceous chondrite using the Cameca NanoSIMS 50L. Chapter 5 is focused on the results of a study of the Zr isotope compositions of a suite of 15 CAIs from different carbonaceous chondrites using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), in order to identify nucleosynthetic anomalies in the CAI-forming region. Chapter 6 focuses on the mass-dependent Mg isotopic compositions measured in 11 CAIs from the Allende CV3 carbonaceous chondrite using MC-ICPMS, to evaluate effects of thermal processing on CAIs.
ContributorsMane, Prajkta (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Desch, Steven (Committee member) / Garvie, Laurence (Committee member) / Bell, James (Committee member) / Arizona State University (Publisher)
Created2016