Matching Items (2)

153936-Thumbnail Image.png

The domain dependence of chemotaxis in a two-dimensional turbulent flow

Description

Presented is a study on the chemotaxis reaction process and its relation with flow topology. The effect of coherent structures in turbulent flows is characterized by studying nutrient uptake and the advantage that is received from motile bacteria over other

Presented is a study on the chemotaxis reaction process and its relation with flow topology. The effect of coherent structures in turbulent flows is characterized by studying nutrient uptake and the advantage that is received from motile bacteria over other non-motile bacteria. Variability is found to be dependent on the initial location of scalar impurity and can be tied to Lagrangian coherent structures through recent advances in the identification of finite-time transport barriers. Advantage is relatively small for initial nutrient found within high stretching regions of the flow, and nutrient within elliptic structures provide the greatest advantage for motile species. How the flow field and the relevant flow topology lead to such a relation is analyzed.

Contributors

Agent

Created

Date Created
2015

150092-Thumbnail Image.png

Dynamics of vortices in numerically simulated turbulent channel flow

Description

The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions

The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail.

Contributors

Agent

Created

Date Created
2011