Matching Items (5)

153207-Thumbnail Image.png

Information pooling bias in collaborative cyber forensics

Description

Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked

Cyber threats are growing in number and sophistication making it important to continually study and improve all dimensions of cyber defense. Human teamwork in cyber defense analysis has been overlooked even though it has been identified as an important predictor of cyber defense performance. Also, to detect advanced forms of threats effective information sharing and collaboration between the cyber defense analysts becomes imperative. Therefore, through this dissertation work, I took a cognitive engineering approach to investigate and improve cyber defense teamwork. The approach involved investigating a plausible team-level bias called the information pooling bias in cyber defense analyst teams conducting the detection task that is part of forensics analysis through human-in-the-loop experimentation. The approach also involved developing agent-based models based on the experimental results to explore the cognitive underpinnings of this bias in human analysts. A prototype collaborative visualization tool was developed by considering the plausible cognitive limitations contributing to the bias to investigate whether a cognitive engineering-driven visualization tool can help mitigate the bias in comparison to off-the-shelf tools. It was found that participant teams conducting the collaborative detection tasks as part of forensics analysis, experience the information pooling bias affecting their performance. Results indicate that cognitive friendly visualizations can help mitigate the effect of this bias in cyber defense analysts. Agent-based modeling produced insights on internal cognitive processes that might be contributing to this bias which could be leveraged in building future visualizations. This work has multiple implications including the development of new knowledge about the science of cyber defense teamwork, a demonstration of the advantage of developing tools using a cognitive engineering approach, a demonstration of the advantage of using a hybrid cognitive engineering methodology to study teams in general and finally, a demonstration of the effect of effective teamwork on cyber defense performance.

Contributors

Agent

Created

Date Created
  • 2014

151325-Thumbnail Image.png

Geographically distributed teams in a collaborative problem solving task

Description

As technology enhances our communication capabilities, the number of distributed teams has risen in both public and private sectors. There is no doubt that these technological advancements have addressed a

As technology enhances our communication capabilities, the number of distributed teams has risen in both public and private sectors. There is no doubt that these technological advancements have addressed a need for communication and collaboration of distributed teams. However, is all technology useful for effective collaboration? Are some methods (modalities) of communication more conducive than others to effective performance and collaboration of distributed teams? Although previous literature identifies some differences in modalities, there is little research on geographically distributed mobile teams (DMTs) performing a collaborative task. To investigate communication and performance in this context, I developed the GeoCog system. This system is a mobile communications and collaboration platform enabling small, distributed teams of three to participate in a variant of the military-inspired game, "Capture the Flag". Within the task, teams were given one hour to complete as many "captures" as possible while utilizing resources to the advantage of the team. In this experiment, I manipulated the modality of communication across three conditions with text-based messaging only, vocal communication only, and a combination of the two conditions. It was hypothesized that bi-modal communication would yield superior performance compared to either single modality conditions. Results indicated that performance was not affected by modality. Further results, including communication analysis, are discussed within this paper.

Contributors

Agent

Created

Date Created
  • 2012

155132-Thumbnail Image.png

Network defense and team cognition: a team-based cybersecurity simulation

Description

This research evaluates a cyber test-bed, DEXTAR (Defense Exercises for Team Awareness Research), and examines the relationship between good and bad team performance in increasingly difficult scenarios. Twenty-one computer science

This research evaluates a cyber test-bed, DEXTAR (Defense Exercises for Team Awareness Research), and examines the relationship between good and bad team performance in increasingly difficult scenarios. Twenty-one computer science graduate students (seven three-person teams), with experience in cybersecurity, participated in a team-based cyber defense exercise in the context of DEXTAR, a high fidelity cybersecurity testbed. Performance measures were analyzed in addition to team process, team behavior, and workload to examine the relationship between good and bad teams. Lessons learned are reported that will inform the next generation of DEXTAR.

Contributors

Agent

Created

Date Created
  • 2016

154982-Thumbnail Image.png

Self "sensor"ship: an interdisciplinary investigation of the persuasiveness, social implications, and ethical design of self-sensoring prescriptive applications

Description

This dissertation research investigates the social implications of computing artifacts that make use of sensor driven self-quantification to implicitly or explicitly direct user behaviors. These technologies are referred to here

This dissertation research investigates the social implications of computing artifacts that make use of sensor driven self-quantification to implicitly or explicitly direct user behaviors. These technologies are referred to here as self-sensoring prescriptive applications (SSPA’s). This genre of technological application has a strong presence in healthcare as a means to monitor health, modify behavior, improve health outcomes, and reduce medical costs. However, the commercial sector is quickly adopting SSPA’s as a means to monitor and/or modify consumer behaviors as well (Swan, 2013). These wearable devices typically monitor factors such as movement, heartrate, and respiration; ostensibly to guide the users to better or more informed choices about their physical fitness (Lee & Drake, 2013; Swan, 2012b). However, applications that claim to use biosensor data to assist in mood maintenance and control are entering the market (Bolluyt, 2015), and applications to aid in decision making about consumer products are on the horizon as well (Swan, 2012b). Interestingly, there is little existing research that investigates the direct impact biosensor data have on decision making, nor on the risks, benefits, or regulation of such technologies. The research presented here is inspired by a number of separate but related gaps in existing literature about the social implications of SSPA’s. First, how SSPA’s impact individual and group decision making and attitude formation within non-medical-care domains (e.g. will a message about what product to buy be more persuasive if it claims to have based the recommendation on your biometric information?). Second, how the design and designers of SSPA’s shape social behaviors and third, how these factors are or are not being considered in future design and public policy decisions.

Contributors

Agent

Created

Date Created
  • 2016

150085-Thumbnail Image.png

Crew coordination modeling in wood-framing construction

Description

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and

The wood-framing trade has not sufficiently been investigated to understand the work task sequencing and coordination among crew members. A new mental framework for a performing crew was developed and tested through four case studies. This framework ensured similar team performance as the one provided by task micro-scheduling in planning software. It also allowed evaluation of the effect of individual coordination within the crew on the crew's productivity. Using design information, a list of micro-activities/tasks and their predecessors was automatically generated for each piece of lumber in the four wood frames. The task precedence was generated by applying elementary geometrical and technological reasoning to each frame. Then, the duration of each task was determined based on observations from videotaped activities. Primavera's (P6) resource leveling rules were used to calculate the sequencing of tasks and the minimum duration of the whole activity for various crew sizes. The results showed quick convergence towards the minimum production time and allowed to use information from Building Information Models (BIM) to automatically establish the optimal crew sizes for frames. Late Start (LS) leveling priority rule gave the shortest duration in every case. However, the logic of LS tasks rule is too complex to be conveyed to the framing crew. Therefore, the new mental framework of a well performing framer was developed and tested to ensure high coordination. This mental framework, based on five simple rules, can be easily taught to the crew and ensures a crew productivity congruent with the one provided by the LS logic. The case studies indicate that once the worst framer in the crew surpasses the limit of 11% deviation from applying the said five rules, every additional percent of deviation reduces the productivity of the whole crew by about 4%.

Contributors

Agent

Created

Date Created
  • 2011