Matching Items (3)
Filtering by

Clear all filters

152160-Thumbnail Image.png
Description
A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an

A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an effective treatment option for cerebral aneurysms that is far less invasive than conventional surgical options. Nonetheless, the rate of successful treatment is as low as 50% for certain types of aneurysms. Treatment success has been correlated with favorable post-treatment hemodynamics. However, current understanding of the effects of endovascular treatment parameters on post-treatment hemodynamics is limited. This limitation is due in part to current challenges in in vivo flow measurement techniques. Improved understanding of post-treatment hemodynamics can lead to more effective treatments. However, the effects of treatment on hemodynamics may be patient-specific and thus, accurate tools that can predict hemodynamics on a case by case basis are also required for improving outcomes.Accordingly, the main objectives of this work were 1) to develop computational tools for predicting post-treatment hemodynamics and 2) to build a foundation of understanding on the effects of controllable treatment parameters on cerebral aneurysm hemodynamics. Experimental flow measurement techniques, using particle image velocimetry, were first developed for acquiring flow data in cerebral aneurysm models treated with an endovascular device. The experimental data were then used to guide the development of novel computational tools, which consider the physical properties, design specifications, and deployment mechanics of endovascular devices to simulate post-treatment hemodynamics. The effects of different endovascular treatment parameters on cerebral aneurysm hemodynamics were then characterized under controlled conditions. Lastly, application of the computational tools for interventional planning was demonstrated through the evaluation of two patient cases.
ContributorsBabiker, M. Haithem (Author) / Frakes, David H (Thesis advisor) / Adrian, Ronald (Committee member) / Caplan, Michael (Committee member) / Chong, Brian (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2013
150080-Thumbnail Image.png
Description
Treatment of cerebral aneurysms using non-invasive methods has existed for decades. Since the advent of modern endovascular techniques, advancements to embolic materials have largely focused on improving platinum coil technology. However, the recent development of Onyx®, a liquid-delivery precipitating polymer system, has opened the door for a new class of

Treatment of cerebral aneurysms using non-invasive methods has existed for decades. Since the advent of modern endovascular techniques, advancements to embolic materials have largely focused on improving platinum coil technology. However, the recent development of Onyx®, a liquid-delivery precipitating polymer system, has opened the door for a new class of embolic materials--liquid-fill systems. These liquid-fill materials have the potential to provide better treatment outcomes than platinum coils. Initial clinical use of Onyx has proven promising, but not without substantial drawbacks, such as co-delivery of angiotoxic compounds and an extremely technical delivery procedure. This work focuses on formulation, characterization and testing of a novel liquid-to-solid gelling polymer system, based on poly(propylene glycol) diacrylate (PPODA) and pentaerythritol tetrakis(3-mercaptopropionate) (QT). The PPODA-QT system bypasses difficulties associated with Onyx embolization, yet still maintains non-invasive liquid delivery--exhibiting the properties of an ideal embolic material for cerebral aneurysm embolization. To allow for material visibility during clinical delivery, an embolic material must be radio-opaque. The PPODA-QT system was formulated with commercially available contrast agents and the gelling kinetics were studied, as a complete understanding of the gelling process is vital for clinical use. These PPODA-QT formulations underwent in vitro characterization of material properties including cytotoxicity, swelling, and degradation behaviors. Formulation and characterization tests led to an optimized PPODA-QT formulation that was used in subsequent in vivo testing. PPODA-QT formulated with the liquid contrast agent ConrayTM was used in the first in vivo studies. These studies employed a swine aneurysm model to assess initial biocompatibility and test different delivery strategies of PPODA-QT. Results showed good biocompatibility and a suitable delivery strategy, providing justification for further in vivo testing. PPODA-QT was then used in a small scale pilot study to gauge long-term effectiveness of the material in a clinically-relevant aneurysm model. Results from the pilot study showed that PPODA-QT has the capability to provide successful, long-term treatment of model aneurysms as well as facilitate aneurysm healing.
ContributorsRiley, Celeste (Author) / Vernon, Brent L (Thesis advisor) / Preul, Mark C (Committee member) / Frakes, David (Committee member) / Pauken, Christine (Committee member) / Massia, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
157386-Thumbnail Image.png
Description
Minimally invasive endovascular embolization procedures decrease surgery time, speed up recovery, and provide the possibility for more comprehensive treatment of aneurysms, arteriovenous malformations (AVMs), and hypervascular tumors. Liquid embolic agents (LEAs) are preferred over mechanical embolic agents, such as coils, because they achieve homogeneous filling of aneurysms and more complex

Minimally invasive endovascular embolization procedures decrease surgery time, speed up recovery, and provide the possibility for more comprehensive treatment of aneurysms, arteriovenous malformations (AVMs), and hypervascular tumors. Liquid embolic agents (LEAs) are preferred over mechanical embolic agents, such as coils, because they achieve homogeneous filling of aneurysms and more complex angioarchitectures. The gold standard of commercially available LEAs is dissolved in dimethyl sulfoxide (DMSO), which has been associated with vasospasm and angiotoxicity. The aim of this study was to investigate amino acid substitution in an enzyme-degradable side group of an N-isopropylacrylamide (NIPAAm) copolymer for the development of a LEA that would be delivered in water and degrade at the rate that tissue is regenerated. NIPAAm copolymers have a lower critical solution temperature (LCST) due to their amphiphilic nature. This property enables them to be delivered as liquids through a microcatheter below their LCST and to solidify in situ above the LCST, which would result in the successful selective occlusion of blood vessels. Therefore, in this work, a series of poly(NIPAAm-co-peptide) copolymers with hydrophobic side groups containing the Ala-Pro-Gly-Leu collagenase substrate peptide sequence were synthesized as in situ forming, injectable copolymers.. The Gly-Leu peptide bond in these polypeptides is cleaved by collagenase, converting the side group into the more hydrophilic Gly-Ala-Pro-Gly-COOH (GAPG-COOH), thus increasing the LCST of the hydrogel after enzyme degradation. Enzyme degradation property and moderate mechanical stability convinces the use of these copolymers as liquid embolic agents.
ContributorsRosas Gomez, Karime Jocelyn (Author) / Vernon, Brent (Thesis advisor) / Weaver, Jessica (Committee member) / Pal, Amrita (Committee member) / Arizona State University (Publisher)
Created2019