Matching Items (4)
152257-Thumbnail Image.png
Description
Today, more and more substations are created and reconstructed to satisfy the growing electricity demands for both industry and residence. It is always a big concern that the designed substation must guarantee the safety of persons who are in the area of the substation. As a result, the safety metrics

Today, more and more substations are created and reconstructed to satisfy the growing electricity demands for both industry and residence. It is always a big concern that the designed substation must guarantee the safety of persons who are in the area of the substation. As a result, the safety metrics (touch voltage, step voltage and grounding resistance), which should be considered at worst case, are supposed to be under the allowable values. To improve the accuracy of calculating safety metrics, at first, it is necessary to have a relatively accurate soil model instead of uniform soil model. Hence, the two-layer soil model is employed in this thesis. The new approximate finite equations with soil parameters (upper-layer resistivity, lower-layer resistivity and upper-layer thickness) are used, which are developed based on traditional infinite expression. The weighted- least-squares regression with new bad data detection method (adaptive weighted function) is applied to fit the measurement data from the Wenner-method. At the end, a developed error analysis method is used to obtain the error (variance) of each parameter. Once the soil parameters are obtained, it is possible to use a developed complex images method to calculate the mutual (self) resistance, which is the induced voltage of a conductor/rod by unit current form another conductor/rod. The basis of the calculation is Green's function between two point current sources, thus, it can be expanded to either the functions between point and line current sources, or the functions between line and line current sources. Finally, the grounding system optimization is implemented with developed three-step optimization strategy using MATLAB solvers. The first step is using "fmincon" solver to optimize the cost function with differentiable constraint equations from IEEE standard. The result of the first step is set as the initial values to the second step, which is using "patternsearch" solver, thus, the non-differentiable and more accurate constraint calculation can be employed. The final step is a backup step using "ga" solver, which is more robust but lager time cost.
ContributorsWu, Xuan (Author) / Tylavsky, Daniel (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
153289-Thumbnail Image.png
Description
Substation ground system insures safety of personnel, which deserves considerable attentions. Basic substation safety requirement quantities include ground grid resistance, mesh touch potential and step potential, moreover, optimal design of a substation ground system should include both safety concerns and ground grid construction cost. In the purpose of optimal designing

Substation ground system insures safety of personnel, which deserves considerable attentions. Basic substation safety requirement quantities include ground grid resistance, mesh touch potential and step potential, moreover, optimal design of a substation ground system should include both safety concerns and ground grid construction cost. In the purpose of optimal designing the ground grid in the accurate and efficient way, an application package coded in MATLAB is developed and its core algorithm and main features are introduced in this work.

To ensure accuracy and personnel safety, a two-layer soil model is applied instead of the uniform soil model in this research. Some soil model parameters are needed for the two-layer soil model, namely upper-layer resistivity, lower-layer resistivity and upper-layer thickness. Since the ground grid safety requirement is considered under the earth fault, the value of fault current and fault duration time are also needed.

After all these parameters are obtained, a Resistance Matrix method is applied to calculate the mutual and self resistance between conductor segments on both the horizontal and vertical direction. By using a matrix equation of the relationship of mutual and self resistance and unit current of the conductor segments, the ground grid rise can be calculated. Green's functions are applied to calculate the earth potential at a certain point produced by horizontal or vertical line of current. Furthermore, the three basic ground grid safety requirement quantities: the mesh touch potential in the worst case point can be obtained from the earth potential and ground grid rise; the step potential can be obtained from two points' earth potential difference; the grid resistance can be obtained from ground grid rise and fault current.

Finally, in order to achieve ground grid optimization problem more accurate and efficient, which includes the number of meshes in the horizontal grid and the number of vertical rods, a novel two-step hybrid genetic algorithm-pattern search (GA-PS) optimization method is developed. The Genetic Algorithm (GA) is used first to search for an approximate starting point, which is used by the Pattern Search (PS) algorithm to find the final optimal result. This developed application provides an optimal grid design meeting all safety constraints. In the cause of the accuracy of the application, the touch potential, step potential, ground potential rise and grid resistance are compared with these produced by the industry standard application WinIGS and some theoretical ground grid model.

In summary, the developed application can solve the ground grid optimization problem with the accurate ground grid modeling method and a hybrid two-step optimization method.
ContributorsZhang, Qianzhi (Author) / Tylavsky, Daniel (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
154270-Thumbnail Image.png
Description
Electric substation physical plans are developed with consideration given to lightning protection. To develop these plans utility design engineers use various methods. This thesis focuses on developing a computer program for two methods/models for substation shielding against direct lightning strokes. The first method is being used currently in the industry

Electric substation physical plans are developed with consideration given to lightning protection. To develop these plans utility design engineers use various methods. This thesis focuses on developing a computer program for two methods/models for substation shielding against direct lightning strokes. The first method is being used currently in the industry to protect the substation structures. The second model is a new and more physics based approach towards lightning phenomenon. Both the methods consider only direct lightning strikes that can hit the substation equipment. Hence, the travelling waves, indirect strokes or over-voltage arriving at the substation equipment are not considered. The Electro-Geometric method (EGM) based Rolling Sphere Method (RSM) is used to develop first part of the program. The aim of the program is to design the protection system for the substation equipment quickly and error free. The protection system uses lightning masts and/or shield wires to protect the station equipment. These are grounded solidly with low impedance to earth. The MATLAB based program gives a two dimensional visual representation of the zone of protection and therefore helps utility engineers to position shielding system. As this program is converted further into an executable file, it can be used on any computer to produce the results without need of any other software. The second part of the thesis focuses on developing the MATLAB code for protection of substation equipment using the Rizk model which is not used as of now for shielding system design in industry. Using more physics based model, simulation of downward lightning leader and connecting upward leader is shown.

Finally both the methods are compared. This includes consideration of a 220 kV substation layout arrangement. The equipment are protected using shielding masts and the comparison is made in terms of number of the protective equipment needed. It is found that the classical rolling sphere model gives more conservative results than the physics based model. Hence the results shows that it is possible to use present methods and still protect the equipment sufficiently.
ContributorsMarathe, Vinit (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2016