Matching Items (5)
Filtering by

Clear all filters

153113-Thumbnail Image.png
Description
As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC

As residential photovoltaic (PV) systems become more and more common and widespread, their system architectures are being developed to maximize power extraction while keeping the cost of associated electronics to a minimum. An architecture that has become popular in recent years is the "DC optimizer" architecture, wherein one DC-DC converter is connected to the output of each PV module. The DC optimizer architecture has the advantage of performing maximum power-point tracking (MPPT) at the module level, without the high cost of using an inverter on each module (the "microinverter" architecture). This work details the design of a proposed DC optimizer. The design incorporates a series-input parallel-output topology to implement MPPT at the sub-module level. This topology has some advantages over the more common series-output DC optimizer, including relaxed requirements for the system's inverter. An autonomous control scheme is proposed for the series-connected converters, so that no external control signals are needed for the system to operate, other than sunlight. The DC optimizer in this work is designed with an emphasis on efficiency, and to that end it uses GaN FETs and an active clamp technique to reduce switching and conduction losses. As with any parallel-output converter, phase interleaving is essential to minimize output RMS current losses. This work proposes a novel phase-locked loop (PLL) technique to achieve interleaving among the series-input converters.
ContributorsLuster, Daniel (Author) / Ayyanar, Raja (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2014
151039-Thumbnail Image.png
Description
With the rapid expansion of the photovoltaic industry over the last decade, there has been a huge demand in the PV installations in the residential sector. This thesis focuses on the analysis and implementation of a dc-dc boost converter at photovoltaic sub-module level. The thesis also analyses the various topologies

With the rapid expansion of the photovoltaic industry over the last decade, there has been a huge demand in the PV installations in the residential sector. This thesis focuses on the analysis and implementation of a dc-dc boost converter at photovoltaic sub-module level. The thesis also analyses the various topologies like switched capacitors and extended duty ratio which can be practically implemented in the photovoltaic panels. The results obtained in this work have concentrated on the use of novel strategies to substitute the use of central dc-dc converter used in PV module string connection. The implementation of distributed MPPT at the PV sub-module level is also an integral part of this thesis. Using extensive PLECS simulations, this thesis came to the conclusion that with the design of a proper compensation at the dc interconnection of a series or parallel PV Module Integrated Converter string, the central dc-dc converter can be substituted. The dc-ac interconnection voltage remains regulated at all irradiance level even without a dc-dc central converter at the string end. The foundation work for the hardware implementation has also been carried out. Design of parameters for future hardware implementation has also been presented in detail in this thesis.
ContributorsSen, Sourav (Author) / Ayyanar, Raja (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2012
150050-Thumbnail Image.png
Description
The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad-active-bridge (QAB) converter which not only provides isolation for the load, but also

The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad-active-bridge (QAB) converter which not only provides isolation for the load, but also for the PV and storage. The AC-DC stage is implemented with a pulse-width-modulated (PWM) single phase rectifier. A unified gyrator-based average model is developed for a general multi-active-bridge (MAB) converter controlled through phase-shift modulation (PSM). Expressions to determine the power rating of the MAB ports are also derived. The developed gyrator-based average model is applied to the QAB converter for faster simulations of the proposed SST during the control design process as well for deriving the state-space representation of the plant. Both linear quadratic regulator (LQR) and single-input-single-output (SISO) types of controllers are designed for the DC-DC stage. A novel technique that complements the SISO controller by taking into account the cross-coupling characteristics of the QAB converter is also presented herein. Cascaded SISO controllers are designed for the AC-DC stage. The QAB demanded power is calculated at the QAB controls and then fed into the rectifier controls in order to minimize the effect of the interaction between the two SST stages. The dynamic performance of the designed control loops based on the proposed control strategies are verified through extensive simulation of the SST average and switching models. The experimental results presented herein show that the transient responses for each control strategy match those from the simulations results thus validating them.
ContributorsFalcones, Sixifo Daniel (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
154463-Thumbnail Image.png
Description
A novel integrated constant current LED driver design on a single chip is developed in this dissertation. The entire design consists of two sections. The first section is a DC-DC switching regulator (boost regulator) as the frontend power supply; the second section is the constant current LED driver system.

In the

A novel integrated constant current LED driver design on a single chip is developed in this dissertation. The entire design consists of two sections. The first section is a DC-DC switching regulator (boost regulator) as the frontend power supply; the second section is the constant current LED driver system.

In the first section, a pulse width modulated (PWM) peak current mode boost regulator is utilized. The overall boost regulator system and its related sub-cells are explained. Among them, an original error amplifier design, a current sensing circuit and slope compensation circuit are presented.

In the second section – the focus of this dissertation – a highly accurate constant current LED driver system design is unveiled. The detailed description of this highly accurate LED driver system and its related sub-cells are presented. A hybrid PWM and linear current modulation scheme to adjust the LED driver output currents is explained. The novel design ideas to improve the LED current accuracy and channel-to-channel output current mismatch are also explained in detail. These ideas include a novel LED driver system architecture utilizing 1) a dynamic current mirror structure and 2) a closed loop structure to keep the feedback loop of the LED driver active all the time during both PWM on-duty and PWM off-duty periods. Inside the LED driver structure, the driving amplifier with a novel slew rate enhancement circuit to dramatically accelerate its response time is also presented.
ContributorsWang, Ge (Author) / Holbert, Keith E. (Thesis advisor) / Song, Hongjiang (Committee member) / Ayyanar, Raja (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2016
155173-Thumbnail Image.png
Description
Presently, hard-switching buck/boost converters are dominantly used for automotive applications. Automotive applications have stringent system requirements for dc-dc converters, such as wide input voltage range and limited EMI noise emission. High switching frequency of the dc-dc converters is much desired in automotive applications for avoiding AM band interference and for

Presently, hard-switching buck/boost converters are dominantly used for automotive applications. Automotive applications have stringent system requirements for dc-dc converters, such as wide input voltage range and limited EMI noise emission. High switching frequency of the dc-dc converters is much desired in automotive applications for avoiding AM band interference and for compact size. However, hard switching buck converter is not suitable at high frequency operation because of its low efficiency. In addition, buck converter has high EMI noise due to its hard-switching. Therefore, soft-switching topologies are considered in this thesis work to improve the performance of the dc-dc converters.

Many soft-switching topologies are reviewed but none of them is well suited for the given automotive applications. Two soft-switching PWM converters are proposed in this work. For low power automotive POL applications, a new active-clamp buck converter is proposed. Comprehensive analysis of this converter is presented. A 2.2 MHz, 25 W active-clamp buck converter prototype with Si MOSFETs was designed and built. The experimental results verify the operation of the converter. For 12 V to 5 V conversion, the Si based prototype achieves a peak efficiency of 89.7%. To further improve the efficiency, GaN FETs are used and an optimized SR turn-off delay is employed. Then, a peak efficiency of 93.22% is achieved. The EMI test result shows significantly improved EMI performance of the proposed active-clamp buck converter. Last, large- and small-signal models of the proposed converter are derived and verified by simulation.

For automotive dual voltage system, a new bidirectional zero-voltage-transition (ZVT) converter with coupled-inductor is proposed in this work. With the coupled-inductor, the current to realize zero-voltage-switching (ZVS) of main switches is much reduced and the core loss is minimized. Detailed analysis and design considerations for the proposed converter are presented. A 1 MHz, 250 W prototype is designed and constructed. The experimental results verify the operation. Peak efficiencies of 93.98% and 92.99% are achieved in buck mode and boost mode, respectively. Significant efficiency improvement is achieved from the efficiency comparison between the hard-switching buck converter and the proposed ZVT converter with coupled-inductor.
ContributorsNan, Chenhao (Author) / Ayyanar, Raja (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Karady, George G. (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016