Matching Items (8)
152600-Thumbnail Image.png
Description
This thesis contains the applications of the ASU mathematical model (Tolerance Maps, T-Maps) to the construction of T-Maps for patterns of line profiles. Previously, Tolerance Maps were developed for patterns of features such as holes, pins, slots and tabs to control their position. The T-Maps that are developed in this

This thesis contains the applications of the ASU mathematical model (Tolerance Maps, T-Maps) to the construction of T-Maps for patterns of line profiles. Previously, Tolerance Maps were developed for patterns of features such as holes, pins, slots and tabs to control their position. The T-Maps that are developed in this thesis are fully compatible with the ASME Y14.5 Standard. A pattern of square profiles, both linear and 2D, is used throughout this thesis to illustrate the idea of constructing the T-Maps for line profiles. The Standard defines two ways of tolerancing a pattern of profiles - Composite Tolerancing and Multiple Single Segment Tolerancing. Further, in the composite tolerancing scheme, there are two different ways to control the entire pattern - repeating a single datum or two datums in the secondary datum reference frame. T-Maps are constructed for all the different specifications. The Standard also describes a way to control the coplanarity of discontinuous surfaces using a profile tolerance and T-Maps have been developed. Since verification of manufactured parts relative to the tolerance specifications is crucial, a least squares fit approach, which was developed earlier for line profiles, has been extended to patterns of line profiles. For a pattern, two tolerances are specified, and the manufactured profile needs to lie within the tolerance zones established by both of these tolerances. An i-Map representation of the manufactured variation, located within the T-Map is also presented in this thesis.
ContributorsRao, Shyam Subramanya (Author) / Davidson, Joseph K. (Thesis advisor) / Arizona State University (Publisher)
Created2014
153032-Thumbnail Image.png
Description
Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods

Most existing security decisions for both defending and attacking are made based on some deterministic approaches that only give binary answers. Even though these approaches can achieve low false positive rate for decision making, they have high false negative rates due to the lack of accommodations to new attack methods and defense techniques. In this dissertation, I study how to discover and use patterns with uncertainty and randomness to counter security challenges. By extracting and modeling patterns in security events, I am able to handle previously unknown security events with quantified confidence, rather than simply making binary decisions. In particular, I cope with the following four real-world security challenges by modeling and analyzing with pattern-based approaches: 1) How to detect and attribute previously unknown shellcode? I propose instruction sequence abstraction that extracts coarse-grained patterns from an instruction sequence and use Markov chain-based model and support vector machines to detect and attribute shellcode; 2) How to safely mitigate routing attacks in mobile ad hoc networks? I identify routing table change patterns caused by attacks, propose an extended Dempster-Shafer theory to measure the risk of such changes, and use a risk-aware response mechanism to mitigate routing attacks; 3) How to model, understand, and guess human-chosen picture passwords? I analyze collected human-chosen picture passwords, propose selection function that models patterns in password selection, and design two algorithms to optimize password guessing paths; and 4) How to identify influential figures and events in underground social networks? I analyze collected underground social network data, identify user interaction patterns, and propose a suite of measures for systematically discovering and mining adversarial evidence. By solving these four problems, I demonstrate that discovering and using patterns could help deal with challenges in computer security, network security, human-computer interaction security, and social network security.
ContributorsZhao, Ziming (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Huang, Dijiang (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2014
150347-Thumbnail Image.png
Description
Interior design continues to re-define itself as a discipline that presents designers with new problems that require innovative solutions. This is particularly true in the case in office design. The transformation of the office environment from the standard bullpen configuration to today's dynamic, flexible, and open floor plans has required

Interior design continues to re-define itself as a discipline that presents designers with new problems that require innovative solutions. This is particularly true in the case in office design. The transformation of the office environment from the standard bullpen configuration to today's dynamic, flexible, and open floor plans has required new design methodologies that incorporate tools and technologies that are readily available to interior designers. Today, increased use of teams in the workplace challenges interior designers to create environments that accommodate both group and individual tasks (Brill, Weidermann & BOSTI associates, 2001). Collaboration has received considerable attention as organizations focus on productivity and reducing costs to compete in a global economy (Hassanain, 2006). Designers and architects should learn to create environments that respond to dynamic, moveable, and flexible work methods. This web-based research study explores the use of pattern language as a new tool for designing collaborative work environments. In 1977, Christopher Alexander and his associates developed `Pattern language' (Alexander, Ishikawa & Silverstein, 1977) as a design formulation methodology. It consists of a series of interrelated physical elements combined to create a framework for design solutions. This pattern language tool for collaborative work environments was created based on research by Lori Anthony (2001). This study further builds upon current trends and research in collaborative work environments. The researcher conducted a pilot test by sending the web-based tool and an online questionnaire to all graduate students and faculty members in the fields of interior design and healthcare and healing environment (HHE). After testing its validity in The Design School at Arizona State University, the same tool and questionnaire was sent to the employees of one of the leading architecture and interior design firms in Phoenix, AZ. The results showed that among those design professionals surveyed, the majority believe pattern language could be a valuable design tool. The insights obtained from this study will provide designers, architects, and facility managers with a new design tool to aid in creating effective collaborative spaces in a work environment.
ContributorsSangoi, Deepika (Author) / Bender, Diane (Thesis advisor) / Brandt, Beverly (Committee member) / Heywood, William (Committee member) / Arizona State University (Publisher)
Created2011
149977-Thumbnail Image.png
Description
Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from

Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from video data by decomposing various key contributing factors, such as pose, view angle, and body shape, in the generation of the image observations. Experimental results have shown that the resulting pose features extracted using the proposed methods exhibit excellent invariance properties to changes in view angles and body shapes. Furthermore, using the proposed invariant multifactor pose features, a suite of simple while effective algorithms have been developed to solve the movement recognition and pose estimation problems. Using these proposed algorithms, excellent human movement analysis results have been obtained, and most of them are superior to those obtained from state-of-the-art algorithms on the same testing datasets. Moreover, a number of key movement analysis challenges, including robust online gesture spotting and multi-camera gesture recognition, have also been addressed in this research. To this end, an online gesture spotting framework has been developed to automatically detect and learn non-gesture movement patterns to improve gesture localization and recognition from continuous data streams using a hidden Markov network. In addition, the optimal data fusion scheme has been investigated for multicamera gesture recognition, and the decision-level camera fusion scheme using the product rule has been found to be optimal for gesture recognition using multiple uncalibrated cameras. Furthermore, the challenge of optimal camera selection in multi-camera gesture recognition has also been tackled. A measure to quantify the complementary strength across cameras has been proposed. Experimental results obtained from a real-life gesture recognition dataset have shown that the optimal camera combinations identified according to the proposed complementary measure always lead to the best gesture recognition results.
ContributorsPeng, Bo (Author) / Qian, Gang (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
150181-Thumbnail Image.png
Description
Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs

Real-world environments are characterized by non-stationary and continuously evolving data. Learning a classification model on this data would require a framework that is able to adapt itself to newer circumstances. Under such circumstances, transfer learning has come to be a dependable methodology for improving classification performance with reduced training costs and without the need for explicit relearning from scratch. In this thesis, a novel instance transfer technique that adapts a "Cost-sensitive" variation of AdaBoost is presented. The method capitalizes on the theoretical and functional properties of AdaBoost to selectively reuse outdated training instances obtained from a "source" domain to effectively classify unseen instances occurring in a different, but related "target" domain. The algorithm is evaluated on real-world classification problems namely accelerometer based 3D gesture recognition, smart home activity recognition and text categorization. The performance on these datasets is analyzed and evaluated against popular boosting-based instance transfer techniques. In addition, supporting empirical studies, that investigate some of the less explored bottlenecks of boosting based instance transfer methods, are presented, to understand the suitability and effectiveness of this form of knowledge transfer.
ContributorsVenkatesan, Ashok (Author) / Panchanathan, Sethuraman (Thesis advisor) / Li, Baoxin (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
154734-Thumbnail Image.png
Description
The human motion is defined as an amalgamation of several physical traits such as bipedal locomotion, posture and manual dexterity, and mental expectation. In addition to the “positive” body form defined by these traits, casting light on the body produces a “negative” of the body: its shadow. We often interchangeably

The human motion is defined as an amalgamation of several physical traits such as bipedal locomotion, posture and manual dexterity, and mental expectation. In addition to the “positive” body form defined by these traits, casting light on the body produces a “negative” of the body: its shadow. We often interchangeably use with silhouettes in the place of shadow to emphasize indifference to interior features. In a manner of speaking, the shadow is an alter ego that imitates the individual.

The principal value of shadow is its non-invasive behaviour of reflecting precisely the actions of the individual it is attached to. Nonetheless we can still think of the body’s shadow not as the body but its alter ego.

Based on this premise, my thesis creates an experiential system that extracts the data related to the contour of your human shape and gives it a texture and life of its own, so as to emulate your movements and postures, and to be your extension. In technical terms, my thesis extracts abstraction from a pre-indexed database that could be generated from an offline data set or in real time to complement these actions of a user in front of a low-cost optical motion capture device like the Microsoft Kinect. This notion could be the system’s interpretation of the action which creates modularized art through the abstraction’s ‘similarity’ to the live action.

Through my research, I have developed a stable system that tackles various connotations associated with shadows and the need to determine the ideal features that contribute to the relevance of the actions performed. The implication of Factor Oracle [3] pattern interpretation is tested with a feature bin of videos. The system also is flexible towards several methods of Nearest Neighbours searches and a machine learning module to derive the same output. The overall purpose is to establish this in real time and provide a constant feedback to the user. This can be expanded to handle larger dynamic data.

In addition to estimating human actions, my thesis best tries to test various Nearest Neighbour search methods in real time depending upon the data stream. This provides a basis to understand varying parameters that complement human activity recognition and feature matching in real time.
ContributorsSeshasayee, Sudarshan Prashanth (Author) / Sha, Xin Wei (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Tinapple, David A (Committee member) / Arizona State University (Publisher)
Created2016
155127-Thumbnail Image.png
Description
The purpose of this study was to identify the algebraic reasoning abilities of young students prior to instruction. The goals of the study were to determine the influence of problem, problem type, question, grade level, and gender on: (a) young children’s abilities to predict the number of shapes in near

The purpose of this study was to identify the algebraic reasoning abilities of young students prior to instruction. The goals of the study were to determine the influence of problem, problem type, question, grade level, and gender on: (a) young children’s abilities to predict the number of shapes in near and far positions in a “growing” pattern without assistance; (b) the nature and amount of assistance needed to solve the problems; and (c) reasoning methods employed by children.

The 8-problem Growing Patterns and Functions Assessment (GPFA), with an accompanying interview protocol, were developed to respond to these goals. Each problem presents sequences of figures of geometric shapes that differ in complexity and can be represented by the function, y = mf +b: in Type 1 problems (1 - 4), m = 1, and in Type 2 problems (5 - 8), m = 2. The two questions in each problem require participants to first, name the number of shapes in the pattern in a near position, and then to identify the number of shapes in a far position. To clarify reasoning methods, participants were asked how they solved the problems.

The GPFA was administered, one-on-one, to 60 students in Grades 1, 2, and 3 with an equal number of males and females from the same elementary school. Problem solution scores without and with assistance, along with reasoning method(s) employed, were tabulated.

Results of data analyses showed that when no assistance was required, scores varied significantly by problem, problem type, and question, but not grade level or gender. With assistance, problem scores varied significantly by problem, problem type, question, and grade level, but not gender.
ContributorsCavanagh, Mary Clare (Author) / Greenes, Carole E. (Thesis advisor) / Buss, Ray (Committee member) / Surbeck, Elaine (Committee member) / Arizona State University (Publisher)
Created2016
154964-Thumbnail Image.png
Description
Traditional methods for detecting the status of traffic lights used in autonomous vehicles may be susceptible to errors, which is troublesome in a safety-critical environment. In the case of vision-based recognition methods, failures may arise due to disturbances in the environment such as occluded views or poor lighting conditions. Some

Traditional methods for detecting the status of traffic lights used in autonomous vehicles may be susceptible to errors, which is troublesome in a safety-critical environment. In the case of vision-based recognition methods, failures may arise due to disturbances in the environment such as occluded views or poor lighting conditions. Some methods also depend on high-precision meta-data which is not always available. This thesis proposes a complementary detection approach based on an entirely new source of information: the movement patterns of other nearby vehicles. This approach is robust to traditional sources of error, and may serve as a viable supplemental detection method. Several different classification models are presented for inferring traffic light status based on these patterns. Their performance is evaluated over real-world and simulation data sets, resulting in up to 97% accuracy in each set.
ContributorsCampbell, Joseph (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Heni (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016