Matching Items (9)

155162-Thumbnail Image.png

Analysis of heat dissipation in AlGaN/GaN HEMT with GaN micropits at GaN-SiC interface

Description

Gallium Nitride (GaN) based microelectronics technology is a fast growing and most exciting semiconductor technology in the fields of high power and high frequency electronics. Excellent electrical properties of GaN

Gallium Nitride (GaN) based microelectronics technology is a fast growing and most exciting semiconductor technology in the fields of high power and high frequency electronics. Excellent electrical properties of GaN such as high carrier concentration and high carrier motility makes GaN based high electron mobility transistors (HEMTs) a preferred choice for RF applications. However, a very high temperature in the active region of the GaN HEMT leads to a significant degradation of the device performance by effecting carrier mobility and concentration. Thus, thermal management in GaN HEMT in an effective manner is key to this technology to reach its full potential.

In this thesis, an electro-thermal model of an AlGaN/GaN HEMT on a SiC substrate is simulated using Silvaco (Atlas) TCAD tools. Output characteristics, current density and heat flow at the GaN-SiC interface are key areas of analysis in this work. The electrical characteristics show a sharp drop in drain currents for higher drain voltages. Temperature profile across the device is observed. At the interface of GaN-SiC, there is a sharp drop in temperature indicating a thermal resistance at this interface. Adding to the existing heat in the device, this difference heat is reflected back into the device, further increasing the temperatures in the active region. Structural changes such as GaN micropits, were introduced at the GaN-SiC interface along the length of the device, to make the heat flow smooth rather than discontinuous. With changing dimensions of these micropits, various combinations were tried to reduce the temperature and enhance the device performance. These GaN micropits gave effective results by reducing heat in active region, by spreading out the heat on to the sides of the device rather than just concentrating right below the hot spot. It also helped by allowing a smooth flow of heat at the GaN-SiC interface. There was an increased peak current density in the active region of the device contributing to improved electrical characteristics. In the end, importance of thermal management in these high temperature devices is discussed along with future prospects and a conclusion of this thesis.

Contributors

Agent

Created

Date Created
  • 2016

154294-Thumbnail Image.png

Modeling and design of GaN high electron mobility transistors and hot electron transistors through Monte Carlo particle-based device simulations

Description

In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and

In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the HET is shown for different layouts, where the collector barrier was scaled.

Contributors

Agent

Created

Date Created
  • 2016

151457-Thumbnail Image.png

TEM characterization of electrically stressed high electron mobility transistors

Description

High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well

High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed AlGaN/GaN HEMTs, (2) microstructural and chemical analysis of the gate/buffer interface of AlN/GaN HEMTs, and (3) studies of the impact of laser-liftoff processing on AlGaN/GaN HEMTs. The electrical performance of stressed AlGaN/GaN HEMTs was measured and the devices binned accordingly. Source- and drain-side degraded, undegraded, and unstressed devices were then prepared via focused-ion-beam milling for examination. Defects in the near-gate region were identified and their correlation to electrical measurements analyzed. Increased gate leakage after electrical stressing is typically attributed to "V"-shaped defects at the gate edge. However, strong evidence was found for gate metal diffusion into the barrier layer as another contributing factor. AlN/GaN HEMTs grown on sapphire substrates were found to have high electrical performance which is attributed to the AlN barrier layer, and robust ohmic and gate contact processes. TEM analysis identified oxidation at the gate metal/AlN buffer layer interface. This thin a-oxide gate insulator was further characterized by energy-dispersive x-ray spectroscopy and energy-filtered TEM. Attributed to this previously unidentified layer, high reverse gate bias up to −30 V was demonstrated and drain-induced gate leakage was suppressed to values of less than 10−6 A/mm. In addition, extrinsic gm and ft * LG were improved to the highest reported values for AlN/GaN HEMTs fabricated on sapphire substrates. Laser-liftoff (LLO) processing was used to separate the active layers from sapphire substrates for several GaN-based HEMT devices, including AlGaN/GaN and InAlN/GaN heterostructures. Warpage of the LLO samples resulted from relaxation of the as-grown strain and strain arising from dielectric and metal depositions, and this strain was quantified by both Newton's rings and Raman spectroscopy methods. TEM analysis demonstrated that the LLO processing produced no detrimental effects on the quality of the epitaxial layers. TEM micrographs showed no evidence of either damage to the ~2 μm GaN epilayer generated threading defects.

Contributors

Agent

Created

Date Created
  • 2012

151557-Thumbnail Image.png

Modeling reliability of Gallium Nitride high electron mobility transistors

Description

This work is focused on modeling the reliability concerns in GaN HEMT technology. The two main reliability concerns in GaN HEMTs are electromechanical coupling and current collapse. A theoretical model

This work is focused on modeling the reliability concerns in GaN HEMT technology. The two main reliability concerns in GaN HEMTs are electromechanical coupling and current collapse. A theoretical model was developed to model the piezoelectric polarization charge dependence on the applied gate voltage. As the sheet electron density in the channel increases, the influence of electromechanical coupling reduces as the electric field in the comprising layers reduces. A Monte Carlo device simulator that implements the theoretical model was developed to model the transport in GaN HEMTs. It is observed that with the coupled formulation, the drain current degradation in the device varies from 2%-18% depending on the gate voltage. Degradation reduces with the increase in the gate voltage due to the increase in the electron gas density in the channel. The output and transfer characteristics match very well with the experimental data. An electro-thermal device simulator was developed coupling the Monte Caro-Poisson solver with the energy balance solver for acoustic and optical phonons. An output current degradation of around 2-3 % at a drain voltage of 5V due to self-heating was observed. It was also observed that the electrostatics near the gate to drain region of the device changes due to the hot spot created in the device from self heating. This produces an electric field in the direction of accelerating the electrons from the channel to surface states. This will aid to the current collapse phenomenon in the device. Thus, the electric field in the gate to drain region is very critical for reliable performance of the device. Simulations emulating the charging of the surface states were also performed and matched well with experimental data. Methods to improve the reliability performance of the device were also investigated in this work. A shield electrode biased at source potential was used to reduce the electric field in the gate to drain extension region. The hot spot position was moved away from the critical gate to drain region towards the drain as the shield electrode length and dielectric thickness were being altered.

Contributors

Agent

Created

Date Created
  • 2013

150417-Thumbnail Image.png

GaN HEMT modeling and design for millimeter and sub-millimeter wave power amplifiers through Monte Carlo particle-based device simulations

Description

The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo

The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this carrier dynamics at the nanoscale. This work initially compares GaN high electron mobility transistors (HEMTs) based on the established Ga-face technology and the emerging N-face technology, through a modeling approach that allows a fair comparison, indicating that the N-face devices exhibit improved performance with respect to Ga-face ones due to the natural back-barrier confinement that mitigates short-channel-effects. An investigation is then carried out on the minimum aspect ratio (i.e. gate length to gate-to-channel-distance ratio) that limits short channel effects in ultra-scaled GaN and InP HEMTs, indicating that this value in GaN devices is 15 while in InP devices is 7.5. This difference is believed to be related to the different dielectric properties of the two materials, and the corresponding different electric field distributions. The dielectric effects of the passivation layer in millimeter-wave, high-power GaN HEMTs are also investigated, finding that the effective gate length is increased by fringing capacitances, enhanced by the dielectrics in regions adjacent to the gate for layers thicker than 5 nm, strongly affecting the frequency performance of deep sub-micron devices. Lastly, efficient Full Band Monte Carlo particle-based device simulations of the large-signal performance of mm-wave transistor power amplifiers with high-Q matching networks are reported for the first time. In particular, a CellularMonte Carlo (CMC) code is self-consistently coupled with a Harmonic Balance (HB) frequency domain circuit solver. Due to the iterative nature of the HB algorithm, this simulation approach is possible only due to the computational efficiency of the CMC, which uses pre-computed scattering tables. On the other hand, HB allows the direct simulation of the steady-state behavior of circuits with long transient time. This work provides an accurate and efficient tool for the device early-stage design, which allows a computerbased performance evaluation in lieu of the extremely time-consuming and expensive iterations of prototyping and experimental large-signal characterization.

Contributors

Agent

Created

Date Created
  • 2011

156425-Thumbnail Image.png

Investigation of Gallium Nitride Heterostructures for Application to High Electron Mobility Transistors

Description

With the high demand for faster and smaller wireless communication devices, manufacturers have been pushed to explore new materials for smaller and faster transistors. One promising class of transistors is

With the high demand for faster and smaller wireless communication devices, manufacturers have been pushed to explore new materials for smaller and faster transistors. One promising class of transistors is high electron mobility transistors (HEMT). AlGaAs/GaAs HEMTs have been shown to perform well at high power and high frequencies. However, AlGaN/GaN HEMTs have been gaining more attention recently due to their comparatively higher power densities and better high frequency performance. Nevertheless, these devices have experienced truncated lifetimes. It is assumed that reducing defect densities in these materials will enable a more direct study of the failure mechanisms in these devices. In this work we present studies done to reduce interfacial oxygen at N-polar GaN/GaN interfaces, growth conditions for InAlN barrier layer, and microanalysis of a partial InAlN-based HEMT. Additionally, the depth of oxidation of an InAlN layer on a gate-less InAlN/GaN metal oxide semiconductor HEMT (MOSHEMT) was investigated. Measurements of electric fields in AlGaN/GaN HEMTs with and without field plates are also presented.

Contributors

Agent

Created

Date Created
  • 2018

151947-Thumbnail Image.png

Study of self-heating effects in GaN HEMTs

Description

GaN high electron mobility transistors (HEMTs) based on the III-V nitride material system have been under extensive investigation because of their superb performance as high power RF devices. Two dimensional

GaN high electron mobility transistors (HEMTs) based on the III-V nitride material system have been under extensive investigation because of their superb performance as high power RF devices. Two dimensional electron gas(2-DEG) with charge density ten times higher than that of GaAs-based HEMT and mobility much higher than Si enables a low on-resistance required for RF devices. Self-heating issues with GaN HEMT and lack of understanding of various phenomena are hindering their widespread commercial development. There is a need to understand device operation by developing a model which could be used to optimize electrical and thermal characteristics of GaN HEMT design for high power and high frequency operation. In this thesis work a physical simulation model of AlGaN/GaN HEMT is developed using commercially available software ATLAS from SILVACO Int. based on the energy balance/hydrodynamic carrier transport equations. The model is calibrated against experimental data. Transfer and output characteristics are the key focus in the analysis along with saturation drain current. The resultant IV curves showed a close correspondence with experimental results. Various combinations of electron mobility, velocity saturation, momentum and energy relaxation times and gate work functions were attempted to improve IV curve correlation. Thermal effects were also investigated to get a better understanding on the role of self-heating effects on the electrical characteristics of GaN HEMTs. The temperature profiles across the device were observed. Hot spots were found along the channel in the gate-drain spacing. These preliminary results indicate that the thermal effects do have an impact on the electrical device characteristics at large biases even though the amount of self-heating is underestimated with respect to thermal particle-based simulations that solve the energy balance equations for acoustic and optical phonons as well (thus take proper account of the formation of the hot-spot). The decrease in drain current is due to decrease in saturation carrier velocity. The necessity of including hydrodynamic/energy balance transport models for accurate simulations is demonstrated. Possible ways for improving model accuracy are discussed in conjunction with future research.

Contributors

Agent

Created

Date Created
  • 2013

156445-Thumbnail Image.png

Transmission electron microscopy study of the two-dimensional electron gas at SrTiO3-based oxide interfaces

Description

The two-dimensional electron gas (2DEG) at SrTiO3-based oxide interfaces has been extensively studied recently for its high carrier density, high electron mobility, superconducting, ferromagnetic, ferrroelectric and magnetoresistance properties, with possible

The two-dimensional electron gas (2DEG) at SrTiO3-based oxide interfaces has been extensively studied recently for its high carrier density, high electron mobility, superconducting, ferromagnetic, ferrroelectric and magnetoresistance properties, with possible application for all-oxide devices. Understanding the mechanisms behind the 2DEG formation and factors affecting its properties is the primary objective of this dissertation.

Advanced electron microscopy techniques, including aberration-corrected electron microscopy and electron energy-loss spectroscopy (EELS) with energy-loss near-edge structure (ELNES) analysis, were used to characterize the interfaces. Image and spectrum data-processing algorithms, including subpixel atomic position measurement, and novel outlier detection by oversampling, subspace division based EELS background removal and bias-free endmember extraction algorithms for hyperspectral unmixing and mapping were heavily used. Results were compared with density functional theory (DFT) calculations for theoretical explanation.

For the γ-Al2O3/SrTiO3 system, negative-Cs imaging confirmed the formation of crystalline γ-Al2O3. ELNES hyperspectral unmixing combined with DFT calculations revealed that oxygen vacancies, rather than polar discontinuity, were the key to the 2DEG formation. The critical thickness can be explained by shift of the Fermi level due to Ti out diffusion from the substrate to the film.

At the LaTiO3/SrTiO3 interface, aberration-corrected imaging showed crystallinity deterioration in LaTiO3 films a few unit cells away from the interface. ELNES showed that oxygen annealing did not alter the crystallinity but converted Ti3+ near the interface into Ti4+, which explained disappearance of the conductivity.

At the EuO/SrTiO3 interface, both high-resolution imaging and ELNES confirmed EuO formation. ELNES hyperspectral unmixing showed a Ti3+ layer confined to within several unit cells of the interface on the SrTiO3 side, confirming the presence of oxygen vacancies.

At the BaTiO3/SrTiO3 interface, spontaneous polarization and local lattice parameters were measured directly in each unit cell column and compared with oxidation state mapping using ELNES with unit-cell resolution. The unusually large polarization near the interface and the polarization gradient were explained by oxygen vacancies and the piezoelectric effect due to epitaxial strain and strain gradient from relaxation.

Contributors

Agent

Created

Date Created
  • 2018

149962-Thumbnail Image.png

Field effect modulation of ion transport in silicon-on-insulator nanopores and their application as nanoscale coulter counters

Description

In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at

In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow the path of microelectronics, the fundamental physics in a nanoscale system changes more rapidly compared to microelectronics, as the size scale is decreased. The changes in length, area, and volume ratios due to reduction in size alter the relative influence of various physical effects determining the overall operation of a system in unexpected ways. One such category of nanofluidic structures demonstrating unique ionic and molecular transport characteristics are nanopores. Nanopores derive their unique transport characteristics from the electrostatic interaction of nanopore surface charge with aqueous ionic solutions. In this doctoral research cylindrical nanopores, in single and array configuration, were fabricated in silicon-on-insulator (SOI) using a combination of electron beam lithography (EBL) and reactive ion etching (RIE). The fabrication method presented is compatible with standard semiconductor foundries and allows fabrication of nanopores with desired geometries and precise dimensional control, providing near ideal and isolated physical modeling systems to study ion transport at the nanometer level. Ion transport through nanopores was characterized by measuring ionic conductances of arrays of nanopores of various diameters for a wide range of concentration of aqueous hydrochloric acid (HCl) ionic solutions. Measured ionic conductances demonstrated two distinct regimes based on surface charge interactions at low ionic concentrations and nanopore geometry at high ionic concentrations. Field effect modulation of ion transport through nanopore arrays, in a fashion similar to semiconductor transistors, was also studied. Using ionic conductance measurements, it was shown that the concentration of ions in the nanopore volume was significantly changed when a gate voltage on nanopore arrays was applied, hence controlling their transport. Based on the ion transport results, single nanopores were used to demonstrate their application as nanoscale particle counters by using polystyrene nanobeads, monodispersed in aqueous HCl solutions of different molarities. Effects of field effect modulation on particle transition events were also demonstrated.

Contributors

Agent

Created

Date Created
  • 2011