Matching Items (21)

152696-Thumbnail Image.png

Optimal input signal design for data-centric identification and control with applications to behavioral health and medicine

Description

Increasing interest in individualized treatment strategies for prevention and treatment of health disorders has created a new application domain for dynamic modeling and control. Standard population-level clinical trials, while useful,

Increasing interest in individualized treatment strategies for prevention and treatment of health disorders has created a new application domain for dynamic modeling and control. Standard population-level clinical trials, while useful, are not the most suitable vehicle for understanding the dynamics of dosage changes to patient response. A secondary analysis of intensive longitudinal data from a naltrexone intervention for fibromyalgia examined in this dissertation shows the promise of system identification and control. This includes datacentric identification methods such as Model-on-Demand, which are attractive techniques for estimating nonlinear dynamical systems from noisy data. These methods rely on generating a local function approximation using a database of regressors at the current operating point, with this process repeated at every new operating condition. This dissertation examines generating input signals for data-centric system identification by developing a novel framework of geometric distribution of regressors and time-indexed output points, in the finite dimensional space, to generate sufficient support for the estimator. The input signals are generated while imposing “patient-friendly” constraints on the design as a means to operationalize single-subject clinical trials. These optimization-based problem formulations are examined for linear time-invariant systems and block-structured Hammerstein systems, and the results are contrasted with alternative designs based on Weyl's criterion. Numerical solution to the resulting nonconvex optimization problems is proposed through semidefinite programming approaches for polynomial optimization and nonlinear programming methods. It is shown that useful bounds on the objective function can be calculated through relaxation procedures, and that the data-centric formulations are amenable to sparse polynomial optimization. In addition, input design formulations are formulated for achieving a desired output and specified input spectrum. Numerical examples illustrate the benefits of the input signal design formulations including an example of a hypothetical clinical trial using the drug gabapentin. In the final part of the dissertation, the mixed logical dynamical framework for hybrid model predictive control is extended to incorporate a switching time strategy, where decisions are made at some integer multiple of the sample time, and manipulation of only one input at a given sample time among multiple inputs. These are considerations important for clinical use of the algorithm.

Contributors

Agent

Created

Date Created
  • 2014

152033-Thumbnail Image.png

An agent-based optimization framework for engineered complex adaptive systems with application to demand response in electricity markets

Description

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

Contributors

Agent

Created

Date Created
  • 2013

155759-Thumbnail Image.png

An improved mathematical formulation for the carbon capture and storage (CCS) problem

Description

Carbon Capture and Storage (CCS) is a climate stabilization strategy that prevents CO2 emissions from entering the atmosphere. Despite its benefits, impactful CCS projects require large investments in infrastructure, which

Carbon Capture and Storage (CCS) is a climate stabilization strategy that prevents CO2 emissions from entering the atmosphere. Despite its benefits, impactful CCS projects require large investments in infrastructure, which could deter governments from implementing this strategy. In this sense, the development of innovative tools to support large-scale cost-efficient CCS deployment decisions is critical for climate change mitigation. This thesis proposes an improved mathematical formulation for the scalable infrastructure model for CCS (SimCCS), whose main objective is to design a minimum-cost pipe network to capture, transport, and store a target amount of CO2. Model decisions include source, reservoir, and pipe selection, as well as CO2 amounts to capture, store, and transport. By studying the SimCCS optimal solution and the subjacent network topology, new valid inequalities (VI) are proposed to strengthen the existing mathematical formulation. These constraints seek to improve the quality of the linear relaxation solutions in the branch and bound algorithm used to solve SimCCS. Each VI is explained with its intuitive description, mathematical structure and examples of resulting improvements. Further, all VIs are validated by assessing the impact of their elimination from the new formulation. The validated new formulation solves the 72-nodes Alberta problem up to 7 times faster than the original model. The upgraded model reduces the computation time required to solve SimCCS in 72% of randomly generated test instances, solving SimCCS up to 200 times faster. These formulations can be tested and then applied to enhance variants of the SimCCS and general fixed-charge network flow problems. Finally, an experience from testing a Benders decomposition approach for SimCCS is discussed and future scope of probable efficient solution-methods is outlined.

Contributors

Agent

Created

Date Created
  • 2017

150247-Thumbnail Image.png

Network topology optimization with alternating current optimal power flow

Description

The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management,

The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management, and minimization of losses can be found in literature, the idea of co-optimizing transmission with generation dispatch has not been widely investigated. Network topology optimization exploits the redundancies that are an integral part of the network to allow for improvement in dispatch efficiency. Although, the concept of a dispatchable network initially appears counterintuitive questioning the wisdom of switching transmission lines on a more regu-lar basis, results obtained in the previous research on transmission switching with a Direct Current Optimal Power Flow (DCOPF) show significant cost reductions. This thesis on network topology optimization with ACOPF emphasizes the need for additional research in this area. It examines the performance of network topology optimization in an Alternating Current (AC) setting and its impact on various parameters like active power loss and voltages that are ignored in the DC setting. An ACOPF model, with binary variables representing the status of transmission lines incorporated into the formulation, is written in AMPL, a mathematical programming language and this optimization problem is solved using the solver KNITRO. ACOPF is a non-convex, nonlinear optimization problem, making it a very hard problem to solve. The introduction of bi-nary variables makes ACOPF a mixed integer nonlinear programming problem, further increasing the complexity of the optimization problem. An iterative method of opening each transmission line individually before choosing the best solution has been proposed as a purely investigative approach to studying the impact of transmission switching with ACOPF. Economic savings of up to 6% achieved using this approach indicate the potential of this concept. In addition, a heuristic has been proposed to improve the computational efficiency of network topology optimization. This research also makes a comparative analysis between transmission switching in a DC setting and switching in an AC setting. Results presented in this thesis indicate significant economic savings achieved by controlled topology optimization, thereby reconfirming the need for further examination of this idea.

Contributors

Agent

Created

Date Created
  • 2011

151672-Thumbnail Image.png

Optimized vortex tube bundle for large flow rate applications

Description

ABSTRACT A vortex tube is a device of a simple structure with no moving parts that can be used to separate a compressed gas into a hot stream and a

ABSTRACT A vortex tube is a device of a simple structure with no moving parts that can be used to separate a compressed gas into a hot stream and a cold stream. Many studies have been carried out to find the mechanisms of the energy separation in the vortex tube. Recent rapid development in computational fluid dynamics is providing a powerful tool to investigate the complex flow in the vortex tube. However various issues in these numerical simulations remain, such as choosing the most suitable turbulent model, as well as the lack of systematic comparative analysis. LES model for the vortex tube simulation is hardly used in the present literatures, and the influence of parameters on the performance of the vortex tube has scarcely been studied. This study is aimed to find the influence of various parameters on the performance of the vortex tube, the best geometric value of vortex tube and the realizable method to reach the required cold out flow rate 40 kg/s . First of all, setting up an original 3-D simulation vortex tube model. By comparing experiment results reported in the literature and our simulation results, a most suitable model for the simulation of the vortex tube is obtained. Secondly, we perform simulations to optimize parameters that can deliver a set of desired output, such as cold stream pressure, temperature and flow-rate. We also discuss the use of the cold air flow for petroleum engineering applications.

Contributors

Agent

Created

Date Created
  • 2013

151324-Thumbnail Image.png

Stochastic optimization and real-time scheduling in cyber-physical systems

Description

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems.

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first part investigates stochastic optimization in real-time wireless systems, with the focus on the deadline-aware scheduling for real-time traffic. The optimal solution to such scheduling problems requires to explicitly taking into account the coupling in the deadline-aware transmissions and stochastic characteristics of the traffic, which involves a dynamic program that is traditionally known to be intractable or computationally expensive to implement. First, real-time scheduling with adaptive network coding over memoryless channels is studied, and a polynomial-time complexity algorithm is developed to characterize the optimal real-time scheduling. Then, real-time scheduling over Markovian channels is investigated, where channel conditions are time-varying and online channel learning is necessary, and the optimal scheduling policies in different traffic regimes are studied. The second part focuses on the stochastic optimization and real-time scheduling involved in energy systems. First, risk-aware scheduling and dispatch for plug-in electric vehicles (EVs) are studied, aiming to jointly optimize the EV charging cost and the risk of the load mismatch between the forecasted and the actual EV loads, due to the random driving activities of EVs. Then, the integration of wind generation at high penetration levels into bulk power grids is considered. Joint optimization of economic dispatch and interruptible load management is investigated using short-term wind farm generation forecast. The third part studies stochastic optimization in distributed control systems under different network environments. First, distributed spectrum access in cognitive radio networks is investigated by using pricing approach, where primary users (PUs) sell the temporarily unused spectrum and secondary users compete via random access for such spectrum opportunities. The optimal pricing strategy for PUs and the corresponding distributed implementation of spectrum access control are developed to maximize the PU's revenue. Then, a systematic study of the nonconvex utility-based power control problem is presented under the physical interference model in ad-hoc networks. Distributed power control schemes are devised to maximize the system utility, by leveraging the extended duality theory and simulated annealing.

Contributors

Agent

Created

Date Created
  • 2012

150380-Thumbnail Image.png

Topology reconfiguration to improve the photovoltaic (PV) array performance

Description

Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally,

Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in the array, and varying weather conditions. With the introduction of smarter inverters and solar modules, the data obtained from the photovoltaic array can be used to dynamically modify the array topology and improve the array power output. This is beneficial especially when module mismatches such as shading, soiling and aging occur in the photovoltaic array. This research focuses on the topology optimization of PV arrays under shading conditions using measurements obtained from a PV array set-up. A scheme known as topology reconfiguration method is proposed to find the optimal array topology for a given weather condition and faulty module information. Various topologies such as the series-parallel (SP), the total cross-tied (TCT), the bridge link (BL) and their bypassed versions are considered. The topology reconfiguration method compares the efficiencies of the topologies, evaluates the percentage gain in the generated power that would be obtained by reconfiguration of the array and other factors to find the optimal topology. This method is employed for various possible shading patterns to predict the best topology. The results demonstrate the benefit of having an electrically reconfigurable array topology. The effects of irradiance and shading on the array performance are also studied. The simulations are carried out using a SPICE simulator. The simulation results are validated with the experimental data provided by the PACECO Company.

Contributors

Agent

Created

Date Created
  • 2011

151367-Thumbnail Image.png

Probabilistic finite element analysis and design optimization for structural designs

Description

This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations

This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.

Contributors

Agent

Created

Date Created
  • 2012

154048-Thumbnail Image.png

Optimization model for design of vegetative filter strips for stormwater management and sediment control

Description

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The resulting optimization model is based upon the kinematic wave equation for overland sheet flow along with equations defining the cumulative infiltration and infiltration rate.

In addition to the stormwater management function, Vegetative filter strips (VFS) are effective mechanisms for control of sediment flow and soil erosion from agricultural and urban lands. Erosion is a major problem associated with areas subjected to high runoffs or steep slopes across the globe. In order to effect economy in the design of grass filter strips as a mechanism for sediment control & stormwater management, an optimization model is required that minimizes the land requirements for the VFS. The optimization model presented in this study includes an intricate system of equations including the equations defining the sheet flow on the paved and grassed area combined with the equations defining the sediment transport over the vegetative filter strip using a non-linear programming optimization model. In this study, the optimization model has been applied using a sensitivity analysis of parameters such as different soil types, rainfall characteristics etc., performed to validate the model

Contributors

Agent

Created

Date Created
  • 2015

154349-Thumbnail Image.png

Parallel optimization of polynomials for large-scale problems in stability and control

Description

In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials.

In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems - in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) - whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers - machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers.

We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.

Contributors

Agent

Created

Date Created
  • 2016