Matching Items (21)

154048-Thumbnail Image.png

Optimization model for design of vegetative filter strips for stormwater management and sediment control

Description

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management

Vegetative filter strips (VFS) are an effective methodology used for storm water management particularly for large urban parking lots. An optimization model for the design of vegetative filter strips that minimizes the amount of land required for stormwater management using the VFS is developed in this study. The resulting optimization model is based upon the kinematic wave equation for overland sheet flow along with equations defining the cumulative infiltration and infiltration rate.

In addition to the stormwater management function, Vegetative filter strips (VFS) are effective mechanisms for control of sediment flow and soil erosion from agricultural and urban lands. Erosion is a major problem associated with areas subjected to high runoffs or steep slopes across the globe. In order to effect economy in the design of grass filter strips as a mechanism for sediment control & stormwater management, an optimization model is required that minimizes the land requirements for the VFS. The optimization model presented in this study includes an intricate system of equations including the equations defining the sheet flow on the paved and grassed area combined with the equations defining the sediment transport over the vegetative filter strip using a non-linear programming optimization model. In this study, the optimization model has been applied using a sensitivity analysis of parameters such as different soil types, rainfall characteristics etc., performed to validate the model

Contributors

Agent

Created

Date Created
2015

154349-Thumbnail Image.png

Parallel optimization of polynomials for large-scale problems in stability and control

Description

In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade

In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems - in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) - whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers - machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers.

We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.

Contributors

Agent

Created

Date Created
2016

151498-Thumbnail Image.png

Optimization for resource-constrained wireless networks

Description

Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on

Nowadays, wireless communications and networks have been widely used in our daily lives. One of the most important topics related to networking research is using optimization tools to improve the utilization of network resources. In this dissertation, we concentrate on optimization for resource-constrained wireless networks, and study two fundamental resource-allocation problems: 1) distributed routing optimization and 2) anypath routing optimization. The study on the distributed routing optimization problem is composed of two main thrusts, targeted at understanding distributed routing and resource optimization for multihop wireless networks. The first thrust is dedicated to understanding the impact of full-duplex transmission on wireless network resource optimization. We propose two provably good distributed algorithms to optimize the resources in a full-duplex wireless network. We prove their optimality and also provide network status analysis using dual space information. The second thrust is dedicated to understanding the influence of network entity load constraints on network resource allocation and routing computation. We propose a provably good distributed algorithm to allocate wireless resources. In addition, we propose a new subgradient optimization framework, which can provide findgrained convergence, optimality, and dual space information at each iteration. This framework can provide a useful theoretical foundation for many networking optimization problems. The study on the anypath routing optimization problem is composed of two main thrusts. The first thrust is dedicated to understanding the computational complexity of multi-constrained anypath routing and designing approximate solutions. We prove that this problem is NP-hard when the number of constraints is larger than one. We present two polynomial time K-approximation algorithms. One is a centralized algorithm while the other one is a distributed algorithm. For the second thrust, we study directional anypath routing and present a cross-layer design of MAC and routing. For the MAC layer, we present a directional anycast MAC. For the routing layer, we propose two polynomial time routing algorithms to compute directional anypaths based on two antenna models, and prove their ptimality based on the packet delivery ratio metric.

Contributors

Agent

Created

Date Created
2013

152033-Thumbnail Image.png

An agent-based optimization framework for engineered complex adaptive systems with application to demand response in electricity markets

Description

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

Contributors

Agent

Created

Date Created
2013

150247-Thumbnail Image.png

Network topology optimization with alternating current optimal power flow

Description

The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management, and minimization of losses can be found in literature, the

The electric transmission grid is conventionally treated as a fixed asset and is operated around a single topology. Though several instances of switching transmission lines for corrective mechaism, congestion management, and minimization of losses can be found in literature, the idea of co-optimizing transmission with generation dispatch has not been widely investigated. Network topology optimization exploits the redundancies that are an integral part of the network to allow for improvement in dispatch efficiency. Although, the concept of a dispatchable network initially appears counterintuitive questioning the wisdom of switching transmission lines on a more regu-lar basis, results obtained in the previous research on transmission switching with a Direct Current Optimal Power Flow (DCOPF) show significant cost reductions. This thesis on network topology optimization with ACOPF emphasizes the need for additional research in this area. It examines the performance of network topology optimization in an Alternating Current (AC) setting and its impact on various parameters like active power loss and voltages that are ignored in the DC setting. An ACOPF model, with binary variables representing the status of transmission lines incorporated into the formulation, is written in AMPL, a mathematical programming language and this optimization problem is solved using the solver KNITRO. ACOPF is a non-convex, nonlinear optimization problem, making it a very hard problem to solve. The introduction of bi-nary variables makes ACOPF a mixed integer nonlinear programming problem, further increasing the complexity of the optimization problem. An iterative method of opening each transmission line individually before choosing the best solution has been proposed as a purely investigative approach to studying the impact of transmission switching with ACOPF. Economic savings of up to 6% achieved using this approach indicate the potential of this concept. In addition, a heuristic has been proposed to improve the computational efficiency of network topology optimization. This research also makes a comparative analysis between transmission switching in a DC setting and switching in an AC setting. Results presented in this thesis indicate significant economic savings achieved by controlled topology optimization, thereby reconfirming the need for further examination of this idea.

Contributors

Agent

Created

Date Created
2011

150111-Thumbnail Image.png

Post-optimization: necessity analysis for combinatorial arrays

Description

Finding the optimal solution to a problem with an enormous search space can be challenging. Unless a combinatorial construction technique is found that also guarantees the optimality of the resulting solution, this could be an infeasible task. If such a

Finding the optimal solution to a problem with an enormous search space can be challenging. Unless a combinatorial construction technique is found that also guarantees the optimality of the resulting solution, this could be an infeasible task. If such a technique is unavailable, different heuristic methods are generally used to improve the upper bound on the size of the optimal solution. This dissertation presents an alternative method which can be used to improve a solution to a problem rather than construct a solution from scratch. Necessity analysis, which is the key to this approach, is the process of analyzing the necessity of each element in a solution. The post-optimization algorithm presented here utilizes the result of the necessity analysis to improve the quality of the solution by eliminating unnecessary objects from the solution. While this technique could potentially be applied to different domains, this dissertation focuses on k-restriction problems, where a solution to the problem can be presented as an array. A scalable post-optimization algorithm for covering arrays is described, which starts from a valid solution and performs necessity analysis to iteratively improve the quality of the solution. It is shown that not only can this technique improve upon the previously best known results, it can also be added as a refinement step to any construction technique and in most cases further improvements are expected. The post-optimization algorithm is then modified to accommodate every k-restriction problem; and this generic algorithm can be used as a starting point to create a reasonable sized solution for any such problem. This generic algorithm is then further refined for hash family problems, by adding a conflict graph analysis to the necessity analysis phase. By recoloring the conflict graphs a new degree of flexibility is explored, which can further improve the quality of the solution.

Contributors

Agent

Created

Date Created
2011

150380-Thumbnail Image.png

Topology reconfiguration to improve the photovoltaic (PV) array performance

Description

Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which

Great advances have been made in the construction of photovoltaic (PV) cells and modules, but array level management remains much the same as it has been in previous decades. Conventionally, the PV array is connected in a fixed topology which is not always appropriate in the presence of faults in the array, and varying weather conditions. With the introduction of smarter inverters and solar modules, the data obtained from the photovoltaic array can be used to dynamically modify the array topology and improve the array power output. This is beneficial especially when module mismatches such as shading, soiling and aging occur in the photovoltaic array. This research focuses on the topology optimization of PV arrays under shading conditions using measurements obtained from a PV array set-up. A scheme known as topology reconfiguration method is proposed to find the optimal array topology for a given weather condition and faulty module information. Various topologies such as the series-parallel (SP), the total cross-tied (TCT), the bridge link (BL) and their bypassed versions are considered. The topology reconfiguration method compares the efficiencies of the topologies, evaluates the percentage gain in the generated power that would be obtained by reconfiguration of the array and other factors to find the optimal topology. This method is employed for various possible shading patterns to predict the best topology. The results demonstrate the benefit of having an electrically reconfigurable array topology. The effects of irradiance and shading on the array performance are also studied. The simulations are carried out using a SPICE simulator. The simulation results are validated with the experimental data provided by the PACECO Company.

Contributors

Agent

Created

Date Created
2011

150567-Thumbnail Image.png

Investigation of sustainable and reliable design alternatives for water distribution systems

Description

Nowadays there is a pronounced interest in the need for sustainable and reliable infrastructure systems to address the challenges of the future infrastructure development. This dissertation presents the research associated with understanding various sustainable and reliable design alternatives for water

Nowadays there is a pronounced interest in the need for sustainable and reliable infrastructure systems to address the challenges of the future infrastructure development. This dissertation presents the research associated with understanding various sustainable and reliable design alternatives for water distribution systems. Although design of water distribution networks (WDN) is a thoroughly studied area, most researchers seem to focus on developing algorithms to solve the non-linear hard kind of optimization problems associated with WDN design. Cost has been the objective in most of the previous studies with few models considering reliability as a constraint, and even fewer models accounting for the environmental impact of WDN. The research presented in this dissertation combines all these important objectives into a multi-objective optimization framework. The model used in this research is an integration of a genetic algorithm optimization tool with a water network solver, EPANET. The objectives considered for the optimization are Life Cycle Costs (LCC) and Life Cycle Carbon Dioxide (CO2) Emissions (LCE) whereby the system reliability is made a constraint. Three popularly used resilience metrics were investigated in this research for their efficiency in aiding the design of WDNs that are able to handle external natural and man-made shocks. The best performing resilience metric is incorporated into the optimization model as an additional objective. Various scenarios were developed for the design analysis in order to understand the trade-offs between different critical parameters considered in this research. An approach is proposed and illustrated to identify the most sustainable and resilient design alternatives from the solution set obtained by the model employed in this research. The model is demonstrated by using various benchmark networks that were studied previously. The size of the networks ranges from a simple 8-pipe system to a relatively large 2467-pipe one. The results from this research indicate that LCE can be reduced at a reasonable cost when a better design is chosen. Similarly, resilience could also be improved at an additional cost. The model used in this research is more suitable for water distribution networks. However, the methodology could be adapted to other infrastructure systems as well.

Contributors

Agent

Created

Date Created
2012

150095-Thumbnail Image.png

Multi-task learning via structured regularization: formulations, algorithms, and applications

Description

Multi-task learning (MTL) aims to improve the generalization performance (of the resulting classifiers) by learning multiple related tasks simultaneously. Specifically, MTL exploits the intrinsic task relatedness, based on which the informative domain knowledge from each task can be shared across

Multi-task learning (MTL) aims to improve the generalization performance (of the resulting classifiers) by learning multiple related tasks simultaneously. Specifically, MTL exploits the intrinsic task relatedness, based on which the informative domain knowledge from each task can be shared across multiple tasks and thus facilitate the individual task learning. It is particularly desirable to share the domain knowledge (among the tasks) when there are a number of related tasks but only limited training data is available for each task. Modeling the relationship of multiple tasks is critical to the generalization performance of the MTL algorithms. In this dissertation, I propose a series of MTL approaches which assume that multiple tasks are intrinsically related via a shared low-dimensional feature space. The proposed MTL approaches are developed to deal with different scenarios and settings; they are respectively formulated as mathematical optimization problems of minimizing the empirical loss regularized by different structures. For all proposed MTL formulations, I develop the associated optimization algorithms to find their globally optimal solution efficiently. I also conduct theoretical analysis for certain MTL approaches by deriving the globally optimal solution recovery condition and the performance bound. To demonstrate the practical performance, I apply the proposed MTL approaches on different real-world applications: (1) Automated annotation of the Drosophila gene expression pattern images; (2) Categorization of the Yahoo web pages. Our experimental results demonstrate the efficiency and effectiveness of the proposed algorithms.

Contributors

Agent

Created

Date Created
2011

149953-Thumbnail Image.png

A sparsity enforcing framework with TVL1 regularization and its application in MR imaging and source localization

Description

The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS),

The theme for this work is the development of fast numerical algorithms for sparse optimization as well as their applications in medical imaging and source localization using sensor array processing. Due to the recently proposed theory of Compressive Sensing (CS), the $\ell_1$ minimization problem attracts more attention for its ability to exploit sparsity. Traditional interior point methods encounter difficulties in computation for solving the CS applications. In the first part of this work, a fast algorithm based on the augmented Lagrangian method for solving the large-scale TV-$\ell_1$ regularized inverse problem is proposed. Specifically, by taking advantage of the separable structure, the original problem can be approximated via the sum of a series of simple functions with closed form solutions. A preconditioner for solving the block Toeplitz with Toeplitz block (BTTB) linear system is proposed to accelerate the computation. An in-depth discussion on the rate of convergence and the optimal parameter selection criteria is given. Numerical experiments are used to test the performance and the robustness of the proposed algorithm to a wide range of parameter values. Applications of the algorithm in magnetic resonance (MR) imaging and a comparison with other existing methods are included. The second part of this work is the application of the TV-$\ell_1$ model in source localization using sensor arrays. The array output is reformulated into a sparse waveform via an over-complete basis and study the $\ell_p$-norm properties in detecting the sparsity. An algorithm is proposed for minimizing a non-convex problem. According to the results of numerical experiments, the proposed algorithm with the aid of the $\ell_p$-norm can resolve closely distributed sources with higher accuracy than other existing methods.

Contributors

Agent

Created

Date Created
2011