Matching Items (4)
Filtering by

Clear all filters

151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152918-Thumbnail Image.png
Description
Isolated DC/DC converters are used to provide electrical isolation between two supply domain systems. A fully integrated isolated DC/DC converter having no board-level components and fabricated using standard integrated circuits (IC) process is highly desirable in order to increase the system reliability and reduce costs. The isolation between the low-voltage

Isolated DC/DC converters are used to provide electrical isolation between two supply domain systems. A fully integrated isolated DC/DC converter having no board-level components and fabricated using standard integrated circuits (IC) process is highly desirable in order to increase the system reliability and reduce costs. The isolation between the low-voltage side and high-voltage side of the converter is realized by a transformer that transfers energy while blocking the DC loop. The resonant mode power oscillator is used to enable high efficiency power transfer. The on-chip transformer is expected to have high coil inductance, high quality factors and high coupling coefficient to reduce the loss in the oscillation. The performance of a transformer is highly dependent on the vertical structure, horizontal geometry and other indispensable structures that make it compatible with the IC process such as metal fills and patterned ground shield (PGS). With the help of three-dimensional (3-D) electro-magnetic (EM) simulation software, the 3-D transformer model is simulated and the simulation result is got with high accuracy.

In this thesis an on-chip transformer for a fully integrated DC/DC converter using standard IC process is developed. Different types of transformers are modeled and simulated in HFSS. The performances are compared to select the optimum design. The effects of the additional structures including PGS and metal fills are also simulated. The transformer is tested with a network analyzer and the testing results show a good consistency with the simulation results when taking the chip traces, printed circuit board (PCB) traces, bond wires and SMA connectors into account.
ContributorsZhao, Yao (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
154311-Thumbnail Image.png
Description
The modern era of consumer electronics is dominated by compact, portable, affordable smartphones and wearable computing devices. Power management integrated circuits (PMICs) play a crucial role in on-chip power management, extending battery life and efficiency of integrated analog, radio-frequency (RF), and mixed-signal cores. Low-dropout (LDO) regulators are commonly used to

The modern era of consumer electronics is dominated by compact, portable, affordable smartphones and wearable computing devices. Power management integrated circuits (PMICs) play a crucial role in on-chip power management, extending battery life and efficiency of integrated analog, radio-frequency (RF), and mixed-signal cores. Low-dropout (LDO) regulators are commonly used to provide clean supply for low voltage integrated circuits, where point-of-load regulation is important. In System-On-Chip (SoC) applications, digital circuits can change their mode of operation regularly at a very high speed, imposing various load transient conditions for the regulator. These quick changes of load create a glitch in LDO output voltage, which hamper performance of the digital circuits unfavorably. For an LDO designer, minimizing output voltage variation and speeding up voltage glitch settling is an important task.

The presented research introduces two fully integrated LDO voltage regulators for SoC applications. N-type Metal-Oxide-Semiconductor (NMOS) power transistor based operation achieves high bandwidth owing to the source follower configuration of the regulation loop. A low input impedance and high output impedance error amplifier ensures wide regulation loop bandwidth and high gain. Current-reused dynamic biasing technique has been employed to increase slew-rate at the gate of power transistor during full-load variations, by a factor of two. Three design variations for a 1-1.8 V, 50 mA NMOS LDO voltage regulator have been implemented in a 180 nm Mixed-mode/RF process. The whole LDO core consumes 0.130 mA of nominal quiescent ground current at 50 mA load and occupies 0.21 mm x mm. LDO has a dropout voltage of 200 mV and is able to recover in 30 ns from a 65 mV of undershoot for 0-50 pF of on-chip load capacitance.
ContributorsDesai, Chirag (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2016
154108-Thumbnail Image.png
Description
A single solar cell provides close to 0.5 V output at its maximum power point, which is very

low for any electronic circuit to operate. To get rid of this problem, traditionally multiple

solar cells are connected in series to get higher voltage. The disadvantage of this approach

is the efficiency loss for

A single solar cell provides close to 0.5 V output at its maximum power point, which is very

low for any electronic circuit to operate. To get rid of this problem, traditionally multiple

solar cells are connected in series to get higher voltage. The disadvantage of this approach

is the efficiency loss for partial shading or mismatch. Even as low as 6-7% of shading can

result in more than 90% power loss. Therefore, Maximum Power Point Tracking (MPPT)

at single solar cell level is the most efficient way to extract power from solar cell.

Power Management IC (MPIC) used to extract power from single solar cell, needs to

start at 0.3 V input. MPPT circuitry should be implemented with minimal power and area

overhead. To start the PMIC at 0.3 V, a switch capacitor charge pump is utilized as an

auxiliary start up circuit for generating a regulated 1.8 V auxiliary supply from 0.3 V input.

The auxiliary supply powers up a MPPT converter followed by a regulated converter. At

the start up both the converters operate at 100 kHz clock with 80% duty cycle and system

output voltage starts rising. When the system output crosses 2.7 V, the auxiliary start up

circuit is turned off and the supply voltage for both the converters is derived from the system

output itself. In steady-state condition the system output is regulated to 3.0 V.

A fully integrated analog MPPT technique is proposed to extract maximum power from

the solar cell. This technique does not require Analog to Digital Converter (ADC) and

Digital Signal Processor (DSP), thus reduces area and power overhead. The proposed

MPPT techniques includes a switch capacitor based power sensor which senses current of

boost converter without using any sense resistor. A complete system is designed which

starts from 0.3 V solar cell voltage and provides regulated 3.0 V system output.
ContributorsSingh, Shrikant (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015