Matching Items (4)
Filtering by

Clear all filters

156916-Thumbnail Image.png
Description
Biochemical reactions underlie all living processes. Their complex web of interactions is difficult to fully capture and quantify with simple mathematical objects. Applying network science to biology has advanced our understanding of the metabolisms of individual organisms and the organization of ecosystems, but has scarcely been applied to life at

Biochemical reactions underlie all living processes. Their complex web of interactions is difficult to fully capture and quantify with simple mathematical objects. Applying network science to biology has advanced our understanding of the metabolisms of individual organisms and the organization of ecosystems, but has scarcely been applied to life at a planetary scale. To characterize planetary-scale biochemistry, I constructed biochemical networks using global databases of annotated genomes and metagenomes, and biochemical reactions. I uncover scaling laws governing biochemical diversity and network structure shared across levels of organization from individuals to ecosystems, to the biosphere as a whole. Comparing real biochemical reaction networks to random reaction networks reveals the observed biological scaling is not a product of chemistry alone, but instead emerges due to the particular structure of selected reactions commonly participating in living processes. I perform distinguishability tests across properties of individual and ecosystem-level biochemical networks to determine whether or not they share common structure, indicative of common generative mechanisms across levels. My results indicate there is no sharp transition in the organization of biochemistry across distinct levels of the biological hierarchy—a result that holds across different network projections.

Finally, I leverage these large biochemical datasets, in conjunction with planetary observations and computational tools, to provide a methodological foundation for the quantitative assessment of biology’s viability amongst other geospheres. Investigating a case study of alkaliphilic prokaryotes in the context of Enceladus, I find that the chemical compounds observed on Enceladus thus far would be insufficient to allow even these extremophiles to produce the compounds necessary to sustain a viable metabolism. The environmental precursors required by these organisms provides a reference for the compounds which should be prioritized for detection in future planetary exploration missions. The results of this framework have further consequences in the context of planetary protection, and hint that forward contamination may prove infeasible without meticulous intent. Taken together these results point to a deeper level of organization in biochemical networks than what has been understood so far, and suggests the existence of common organizing principles operating across different levels of biology and planetary chemistry.
ContributorsSmith, Harrison Brodsky (Author) / Walker, Sara I (Thesis advisor) / Anbar, Ariel D (Committee member) / Line, Michael R (Committee member) / Okie, Jordan G. (Committee member) / Romaniello, Stephen J. (Committee member) / Arizona State University (Publisher)
Created2018
154934-Thumbnail Image.png
Description
On Mars, sedimentary deposits reveal a complex history of water- and wind-related geologic processes. Central mounds – kilometer-scale stacks of sediment located within craters – occur across Mars, but the specific processes responsible for mound formation and subsequent modification are still uncertain. A survey of central mounds within large craters

On Mars, sedimentary deposits reveal a complex history of water- and wind-related geologic processes. Central mounds – kilometer-scale stacks of sediment located within craters – occur across Mars, but the specific processes responsible for mound formation and subsequent modification are still uncertain. A survey of central mounds within large craters was conducted. Mound locations, mound offsets within their host craters, and relative mound heights were used to address various mound formation hypotheses. The results suggest that mound sediments once filled their host craters and were later eroded into the features observed today. Mounds offsets from the center of their host crater imply that wind caused the erosion of central mounds. An in depth study of a single central mound (Mt. Sharp within Gale crater) was also conducted. Thermal Emission Imaging System Visible Imaging Subsystem (THEMIS-VIS) mosaics in grayscale and false color were used to characterize the morphology and color variations in and around Gale crater. One result of this study is that dunes within Gale crater vary in false color composites from blue to purple, and that these color differences may be due to changes in dust cover, grain size, and/or composition. To further investigate dune fields on Mars, albedo variations at eight dune fields were studied based on the hypothesis that a dune’s ripple migration rate is correlated to its albedo. This study concluded that a dune’s minimum albedo does not have a simple correlation with its ripple migration rate. Instead, dust devils remove dust on slow-moving and immobile dunes, whereas saltating sand caused by strong winds removes dust on faster-moving dunes.

On the Moon, explosive volcanic deposits within Oppenheimer crater that were emplaced ballistically were investigated. Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer mid-infrared data, LRO Camera images, and Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra were used to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. The mineralogy and iron-content of the pyroclastic deposits vary significantly (including examples of potentially very high iron compositions), which indicates variability in eruption style. These results suggest that localized lunar pyroclastic deposits may have a more complex origin and mode of emplacement than previously thought.
ContributorsBennett, Kristen Alicia (Author) / Bell, James F. (Thesis advisor) / Christensen, Phillip (Committee member) / Clarke, Amanda (Committee member) / Robinson, Mark (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2016
154973-Thumbnail Image.png
Description
ABSTRACT

The Spirit landing site in Gusev Crater has been imaged by the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) camera more than thirty times since 2006. The breadth of this image set allowed a study of changes to surface features, covering four Mars years.

Small fields of

ABSTRACT

The Spirit landing site in Gusev Crater has been imaged by the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) camera more than thirty times since 2006. The breadth of this image set allowed a study of changes to surface features, covering four Mars years.

Small fields of bedforms comprised of dark material, and dark dust devil tracks are among the features revealed in the images. The bedforms are constrained within craters on the plains, and unconstrained in depressions less than 200m wide within the topography of the Columbia Hills, a ~120m-high structure in center of Gusev. Dust devil tracks appear in many images of the bedforms.

Within the Columbia Hills, three bedform fields approximately 180m2 and composed of fine dark basaltic sand were studied, using five HiRISE images taken from 2006 to 2014. Both bedform crests and the dust devil tracks superimposed on them were evaluated for change to azimuth and length, and for correlation between the features. The linear to slightly sinuous transverse crests ranging from less than 1m to 113m in length and two to three meters in wavelength, are primary bedforms. During the study they shifted as much as 33 degrees in azimuth, and individual crests moved on the surface as much as 0.75m. The greatest changes corresponded to a global dust storm in 2007. Average crest movement was documented at the rate of 0.25m per year. Rather than moving progressively, the crests eventually returned to near their original orientation after the storm. The dust devil tracks, reflecting a more complex wind regime, including vortex development during diurnal heating, maintained predominantly NW-SE orientations but also reflected the effects of the storm.

The observed modifications were neither progressive, nor strictly seasonal. The apparent stability of the bedform geometry over four seasons supports the predictions of the Mars Regional Atmospheric Modeling System (MRAMS): low speed (1-7.5 ms-1), daily alternating winds of relatively equal force. Crest profiles were found to be nearly symmetrical, without slipfaces to indicate a preferential wind direction; this finding also is supported by the MRAMS model.
ContributorsPendleton-Hoffer, Mary C (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Whipple, Kelin (Committee member) / Knauth, Paul (Committee member) / Arizona State University (Publisher)
Created2016
157675-Thumbnail Image.png
Description
Water has shaped the surface of Mars, recording previous environments and inspiring the search for extinct life beyond Earth. While conditions on the Martian surface today are not conducive to the presence of liquid water, ancient erosional and depositional features indicate that this was not always so. Quantifying the regional

Water has shaped the surface of Mars, recording previous environments and inspiring the search for extinct life beyond Earth. While conditions on the Martian surface today are not conducive to the presence of liquid water, ancient erosional and depositional features indicate that this was not always so. Quantifying the regional and global history of water on Mars is crucial to understanding how the planet evolved, where to focus future exploration, and implications for water on Earth.

Many sites on Mars contain layered sedimentary deposits, sinuous valleys with delta shaped deposits, and other indications of large lakes. The Hypanis deposit is a unique endmember in this set of locations as it appears to be the largest ancient river delta identified on the planet, and it appears to have no topographic boundary, implying deposition into a sea. I have used a variety of high-resolution remote sensing techniques and geologic mapping techniques to present a new model of past water activity in the region.

I gathered new orbital observations and computed thermal inertia, albedo, elevation, and spectral properties of the Hypanis deposit. I measured the strike and dip of deposit layers to interpret the sedimentary history. My results indicate that Hypanis was formed in a large calm lacustrine setting. My geomorphic mapping of the deposit and catchment indicates buried volatile-rich sediments erupted through the Chryse basin fill, and may be geological young or ongoing. Collectively, my results complement previous studies that propose a global paleoshoreline, and support interpretations that Mars had an ocean early in its history. Future missions to the Martian surface should consider Hypanis as a high-value sampling opportunity.
ContributorsAdler, Jacob (Author) / Bell, James (Thesis advisor) / Christensen, Philip R. (Philip Russel) (Committee member) / Robinson, Mark (Committee member) / Asphaug, Erik (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2019