Matching Items (1)
Filtering by

Clear all filters

153900-Thumbnail Image.png
Description
Olympus Mons is the largest volcano on Mars. Previous studies have focused on large scale features on Olympus Mons, such as the basal escarpment, summit caldera complex and aureole deposits. My objective was to identify and characterize previously unrecognized and unmapped small scale features to understand the volcanotectonic

Olympus Mons is the largest volcano on Mars. Previous studies have focused on large scale features on Olympus Mons, such as the basal escarpment, summit caldera complex and aureole deposits. My objective was to identify and characterize previously unrecognized and unmapped small scale features to understand the volcanotectonic evolution of this enormous volcano. For this study I investigated flank vents and arcuate graben. Flank vents are a common feature on composite volcanoes on Earth. They provide information on the volatile content of magmas, the propagation of magma in the subsurface and the tectonic stresses acting on the volcano. Graben are found at a variety of scales in close proximity to Martian volcanoes. They can indicate flexure of the lithosphere in response to the load of the volcano or gravitation spreading of the edifice. Using Context Camera (CTX), High Resolution Imaging Science Experiment (HiRISE), Thermal Emission Imaging System (THEMIS), High Resolution Stereo Camera Digital Terrain Model (HRSC DTM) and Mars Orbiter Laser Altimeter (MOLA) data, I have identified and characterized the morphology and distribution of 60 flank vents and 84 arcuate graben on Olympus Mons. Based on the observed vent morphologies, I conclude that effusive eruptions have dominated on Olympus Mons in the Late Amazonian, with flank vents playing a limited role. The spatial distribution of flank vents suggests shallow source depths and radial dike propagation. Arcuate graben, not previously observed in lower resolution datasets, occur on the lower flanks of Olympus Mons and indicate a recent extensional state of stress. Based on spatial and superposition relationships, I have constructed a developmental sequence for the construction of Olympus Mons: 1) Construction of the shield via effusive lava flows.; 2) Formation of the near summit thrust faults (flank terraces); 3) Flank failure leading to scarp formation and aureole deposition; 4) Late Amazonian effusive resurfacing and formation of flank vents; 5) Subsidence of the caldera, waning volcanism and graben formation. This volcanotectonic evolution closely resembles that proposed on Ascraeus Mons. Extensional tectonism may continue to affect the lower flanks of Olympus Mons today.
ContributorsPeters, Sean I. (Author) / Christensen, Philip R. (Thesis advisor) / Clarke, Amanda B (Committee member) / Whipple, Kelin X (Committee member) / Arizona State University (Publisher)
Created2015