Matching Items (2)

156777-Thumbnail Image.png

Automated Injection of Curated Knowledge Into Real-Time Clinical Systems: CDS Architecture for the 21st Century

Description

Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for

Clinical Decision Support (CDS) is primarily associated with alerts, reminders, order entry, rule-based invocation, diagnostic aids, and on-demand information retrieval. While valuable, these foci have been in production use for decades, and do not provide a broader, interoperable means of plugging structured clinical knowledge into live electronic health record (EHR) ecosystems for purposes of orchestrating the user experiences of patients and clinicians. To date, the gap between knowledge representation and user-facing EHR integration has been considered an “implementation concern” requiring unscalable manual human efforts and governance coordination. Drafting a questionnaire engineered to meet the specifications of the HL7 CDS Knowledge Artifact specification, for example, carries no reasonable expectation that it may be imported and deployed into a live system without significant burdens. Dramatic reduction of the time and effort gap in the research and application cycle could be revolutionary. Doing so, however, requires both a floor-to-ceiling precoordination of functional boundaries in the knowledge management lifecycle, as well as formalization of the human processes by which this occurs.

This research introduces ARTAKA: Architecture for Real-Time Application of Knowledge Artifacts, as a concrete floor-to-ceiling technological blueprint for both provider heath IT (HIT) and vendor organizations to incrementally introduce value into existing systems dynamically. This is made possible by service-ization of curated knowledge artifacts, then injected into a highly scalable backend infrastructure by automated orchestration through public marketplaces. Supplementary examples of client app integration are also provided. Compilation of knowledge into platform-specific form has been left flexible, in so far as implementations comply with ARTAKA’s Context Event Service (CES) communication and Health Services Platform (HSP) Marketplace service packaging standards.

Towards the goal of interoperable human processes, ARTAKA’s treatment of knowledge artifacts as a specialized form of software allows knowledge engineers to operate as a type of software engineering practice. Thus, nearly a century of software development processes, tools, policies, and lessons offer immediate benefit: in some cases, with remarkable parity. Analyses of experimentation is provided with guidelines in how choice aspects of software development life cycles (SDLCs) apply to knowledge artifact development in an ARTAKA environment.

Portions of this culminating document have been further initiated with Standards Developing Organizations (SDOs) intended to ultimately produce normative standards, as have active relationships with other bodies.

Contributors

Agent

Created

Date Created
  • 2018

149907-Thumbnail Image.png

CPR complex pattern ranking for evaluating top-k pattern queries over event streams

Description

Most existing approaches to complex event processing over streaming data rely on the assumption that the matches to the queries are rare and that the goal of the system is

Most existing approaches to complex event processing over streaming data rely on the assumption that the matches to the queries are rare and that the goal of the system is to identify these few matches within the incoming deluge of data. In many applications, such as stock market analysis and user credit card purchase pattern monitoring, however the matches to the user queries are in fact plentiful and the system has to efficiently sift through these many matches to locate only the few most preferable matches. In this work, we propose a complex pattern ranking (CPR) framework for specifying top-k pattern queries over streaming data, present new algorithms to support top-k pattern queries in data streaming environments, and verify the effectiveness and efficiency of the proposed algorithms. The developed algorithms identify top-k matching results satisfying both patterns as well as additional criteria. To support real-time processing of the data streams, instead of computing top-k results from scratch for each time window, we maintain top-k results dynamically as new events come and old ones expire. We also develop new top-k join execution strategies that are able to adapt to the changing situations (e.g., sorted and random access costs, join rates) without having to assume a priori presence of data statistics. Experiments show significant improvements over existing approaches.

Contributors

Agent

Created

Date Created
  • 2011