Matching Items (2)
Filtering by

Clear all filters

154682-Thumbnail Image.png
Description
Schools all around the country are improving the performance of their buildings by adopting high performance design principles. Higher levels of energy efficiency can pave the way for K-12 Schools to achieve net zero energy (NZE) conditions, a state where the energy generated by on-site renewable sources are sufficient to

Schools all around the country are improving the performance of their buildings by adopting high performance design principles. Higher levels of energy efficiency can pave the way for K-12 Schools to achieve net zero energy (NZE) conditions, a state where the energy generated by on-site renewable sources are sufficient to meet the cumulative annual energy demands of the facility. A key capability for the proliferation of Net Zero Energy Buildings (NZEB) is the need for a design methodology that identifies the optimum mix of energy efficient design features to be incorporated into the building. The design methodology should take into account the interaction effects of various energy efficiency measures as well as their associated costs so that life cycle cost can be minimized for the entire life span of the building.

This research aims at developing such a methodology for generating cost effective net zero energy solutions for school buildings. The Department of Energy (DOE) prototype primary school, meant to serve as the starting baseline, was modeled in the building energy simulation software eQUEST and made compliant with the requirement of ASHRAE 90.1-2007. Commonly used efficiency measures, for which credible initial cost and maintenance data were available, were selected as the parametric design set. An initial sensitivity analysis was conducted by using the Morris Method to rank the efficiency measures in terms of their importance and interaction strengths. A sequential search technique was adopted to search the solution space and identify combinations that lie near the Pareto-optimal front; this allowed various minimum cost design solutions to be identified corresponding to different energy savings levels.

Based on the results of this study, it was found that the cost optimal combination of measures over the 30 year analysis span resulted in an annual energy cost reduction of 47%, while net zero site energy conditions were achieved by the addition of a 435 kW photovoltaic generation system that covered 73% of the roof area. The simple payback period for the additional technology required to achieve NZE conditions was calculated to be 26.3 years and carried a 37.4% premium over the initial building construction cost. The study identifies future work in how to automate this computationally conservative search technique so that it can provide practical feedback to the building designer during all stages of the design process.
ContributorsIslam, Mohammad Moshfiqul (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey J. (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2016
153551-Thumbnail Image.png
Description
An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems

An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings.

This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.’s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.
ContributorsKarizi, Nasim (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Dasgupta, Partha (Committee member) / Kroelinger, Michael D. (Committee member) / Arizona State University (Publisher)
Created2015