Matching Items (4)
Filtering by

Clear all filters

153267-Thumbnail Image.png
Description
In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent,

In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent, Diorhabda carinulata, and riparian restoration.

During 2013 and 2014, vegetation and herpetofauna were monitored at 21 riparian locations along the Virgin River via trapping and visual encounter surveys. Study sites were divided into four stand types based on density and percent cover of dominant trees (Tamarix, Prosopis, Populus, and Salix) and presence of restoration activities: Tam, Tam-Pros, Tam-Pop/Sal, and Restored Tam-Pop/Sal. Restoration activities consisted of mechanical removal of non-native trees, transplanting native trees, and introduction of water flow. All sites were affected by biological control. I predicted that herpetofauna abundance would vary between stand types and that herpetofauna abundance would be greatest in Restored Tam-Pop/Sal sites due to increased habitat openness and variation following restoration efforts.

Results from trapping indicated that Restored Tam-Pop/Sal sites had three times more total lizard and eight times more Sceloporus uniformis captures than other stand types. Anaxyrus woodhousii abundance was greatest in Tam-Pop/Sal and Restored Tam-Pop/Sal sites. Visual encounter surveys indicated that herpetofauna abundance was greatest in the Restored Tam-Pop/Sal site compared to the adjacent Unrestored Tam-Pop/Sal site. Habitat variables were reduced to six components using a principle component analysis and significant differences were detected among stand types. Restored Tam-Pop/Sal sites were most similar to Tam-Pop/Sal sites. S. uniformis were positively associated with large woody debris and high densities of Populus, Salix, and large diameter Prosopis.

Restored Tam-Pop/Sal sites likely supported higher abundances of herpetofauna, as these areas exhibited greater habitat heterogeneity. Restoration activities created a mosaic habitat by reducing canopy cover and increasing native tree density and surface water. Natural resource managers should consider implementing additional restoration efforts following biological control when attempting to restore riparian areas dominated by Tamarix and other non-native trees.
ContributorsMosher, Kent (Author) / Bateman, Heather L (Thesis advisor) / Stromberg, Juliet C. (Committee member) / Miller, William H. (Committee member) / Arizona State University (Publisher)
Created2014
149894-Thumbnail Image.png
Description
Non-native saltcedar (Tamarix spp.) has invaded many riparian communities and is the third most abundant tree in Southwestern riparian areas. I evaluated lizard populations and microhabitat selection during 2009 and 2010 along the Virgin River in Nevada and Arizona to determine the impact of saltcedar. Along the riparian corridor, I

Non-native saltcedar (Tamarix spp.) has invaded many riparian communities and is the third most abundant tree in Southwestern riparian areas. I evaluated lizard populations and microhabitat selection during 2009 and 2010 along the Virgin River in Nevada and Arizona to determine the impact of saltcedar. Along the riparian corridor, I observed common side-blotched lizards (Uta stansburiana) within two vegetation types: monotypic non-native saltcedar stands or mixed stands of cottonwood (Populus fremontii), willow (Salix spp.), mesquite (Prosopis spp.) and saltcedar. I predicted that population parameters such as body condition, adult to hatchling ratio, abundance, and persistence would vary among vegetation types. Also, I predicted the presence of saltcedar influences how lizards utilize available habitat. Lizard population parameters were obtained from a mark-recapture study in which I captured 233 individual lizards. I examined habitat selection and habitat availability using visual encounter surveys (VES) for lizards and recorded 11 microhabitat variables where 16 lizards were found. I found no significant difference in population parameters between mixed and non-native saltcedar communities. However, population parameters were negatively correlated with canopy cover. I found that lizards selected habitat with low understory and canopy cover regardless of vegetation type. My results indicate that lizards utilize similar structural characteristics in both mixed and non-native vegetation. Understanding impacts of saltcedar on native fauna is important for managers who are tasked with control and management of this non-native species.
ContributorsNielsen, Danny (Author) / Bateman, Heather L. (Thesis advisor) / Miller, William H. (Committee member) / Sullivan, Brian K. (Committee member) / Arizona State University (Publisher)
Created2011
156999-Thumbnail Image.png
Description
Riparian systems in the arid southwest are heavily altered and, based on relative land-area, provision a disproportionately high number of native wildlife. Amphibians and reptiles are collectively the most threatened vertebrate taxa and, in the Sonoran Desert, are often reliant on riparian habitat. The link between amphibians and environmental water

Riparian systems in the arid southwest are heavily altered and, based on relative land-area, provision a disproportionately high number of native wildlife. Amphibians and reptiles are collectively the most threatened vertebrate taxa and, in the Sonoran Desert, are often reliant on riparian habitat. The link between amphibians and environmental water characteristics, as well as the association between lizards and habitat structure, make herpetofauna good organisms for which to examine the effects of environmental change.

My objective was to relate capture rates of a fossorial anuran and lizard abundance to aspects of native, invaded, and shrub-encroached riparian habitats in order to forecast the potential winners and losers of riparian habitat xerification and invasion.

I measured habitat and monitored herpetofauna at 18 sites near the confluence of the San Pedro River and Gila River in Pinal County, Arizona in 2016 and 2017. Sites were divided into three categories based on dominant tree genus; Populus-Salix, Prosopis, and Tamarix, which represented native riparia, xeric riparia, and invaded riparia, respectively.

Habitat measurements indicated that sites varied significantly in structure, and that dominant tree species was a useful descriptor of habitat physiognomy. Results from herpetofauna trapping demonstrated that Scaphiopus couchii, a fossorial anuran, occupy Prosopis sites at a much higher rate than at Tamarix sites, which were almost completely avoided. S. couchii was also found to be closely tied to xero-riparian habitat components present at Prosopis sites and soil analyses indicate that aspects of soil moisture and texture play an important role in the partitioning of this species across altered riparian habitats. Lizard abundance was found to be significantly lower in Tamarix habitat, with the majority of captures attributed to the generalist whiptail Aspidoscelis tigris. Additionally, more than half of lizard species that were analyzed displayed a negative association to Tamarix habitat. Of the three habitat types considered, Populus-Salix supported the greatest abundance of lizards.

Based on this study, the deleterious effects of xerfication on a riparian herpetofauna community may be lesser than those of Tamarix invasion. These two forms of riparian habitat shift often co-occur, with the ultimate cause being changes in hydrologic regime. This may imply that a bottom-up approach, wherein historic hydrology is restored to restore or maintain native habitats, to riverine management is appropriate for riparian herpetofauna conservation.
ContributorsRiddle, Sidney Bishop (Author) / Bateman, Heather L. (Thesis advisor) / Albuquerque, Fabio (Committee member) / Saul, Steven E (Committee member) / Arizona State University (Publisher)
Created2018
157978-Thumbnail Image.png
Description
Riparian areas are an important resource, especially in the arid southwest, for many wildlife species. Understanding species occurrence in areas dominated by non-native vegetation is important to determine if management should be implemented. Saltcedar (Tamarix spp.) is one of the most prevalent non-native trees in riparian areas in the southwest

Riparian areas are an important resource, especially in the arid southwest, for many wildlife species. Understanding species occurrence in areas dominated by non-native vegetation is important to determine if management should be implemented. Saltcedar (Tamarix spp.) is one of the most prevalent non-native trees in riparian areas in the southwest United States and can alter vegetation structure, but little is known about how medium and large carnivores use stands of saltcedar. Three riparian forest types make up the San Pedro riparian corridor: non-native saltcedar, native mesquite (Prosopis spp.) bosque, and a mixture of native cottonwood (Populus fremontii) and willow (Salix goodingii) woodlands. My goals were to determine relative use, diversity, and occupancy of medium and large mammals across forest types to evaluate use of the non-native stands. I sampled mammals along approximately 25.7 river kilometers between July 2017 and October 2018, using 18 trail cameras (six per forest type) spaced 1km apart. I summarized environmental variables around the camera sites to relate them to species occupancy and reduced them to 4 components using a Principal Component Analysis (PCA). I observed 14 carnivore species, including bobcat (Lynx rufus), coyote (Canis latrans), and coati (Nasua narica) over 7,692 trap nights. Occupancy of some species may have been influenced by the different components, but models showed high standard errors, making it difficult to draw firm conclusions. Most mammal species used all three forest types at some level and no surveyed forest type was completely avoided or unused. Coyote tended to have greater use in the mesquite forest while canids trended toward greater use in saltcedar forest. Based on two-species occupancy models as well as activity overlap patterns, subordinate species did not appear to avoid dominant species. No species seems significantly affected by non-native saltcedar at this time.
ContributorsHerzog, Cheyenne J (Author) / Bateman, Heather L (Thesis advisor) / Lewis, Jesse (Committee member) / Cunningham, Stan (Committee member) / Arizona State University (Publisher)
Created2019