Matching Items (3)

Filtering by

Clear all filters

156331-Thumbnail Image.png

Graph Search as a Feature in Imperative/Procedural Programming Languages

Description

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their

Graph theory is a critical component of computer science and software engineering, with algorithms concerning graph traversal and comprehension powering much of the largest problems in both industry and research. Engineers and researchers often have an accurate view of their target graph, however they struggle to implement a correct, and efficient, search over that graph.

To facilitate rapid, correct, efficient, and intuitive development of graph based solutions we propose a new programming language construct - the search statement. Given a supra-root node, a procedure which determines the children of a given parent node, and optional definitions of the fail-fast acceptance or rejection of a solution, the search statement can conduct a search over any graph or network. Structurally, this statement is modelled after the common switch statement and is put into a largely imperative/procedural context to allow for immediate and intuitive development by most programmers. The Go programming language has been used as a foundation and proof-of-concept of the search statement. A Go compiler is provided which implements this construct.

Contributors

Agent

Created

Date Created
2018

154818-Thumbnail Image.png

A composite natural language processing and information retrieval approach to question answering against a structured knowledge base

Description

With the inception of World Wide Web, the amount of data present on the internet is tremendous. This makes the task of navigating through this enormous amount of data quite difficult for the user. As users struggle to navigate through

With the inception of World Wide Web, the amount of data present on the internet is tremendous. This makes the task of navigating through this enormous amount of data quite difficult for the user. As users struggle to navigate through this wealth of information, the need for the development of an automated system that can extract the required information becomes urgent. The aim of this thesis is to develop a Question Answering system to ease the process of information retrieval.

Question Answering systems have been around for quite some time and are a sub-field of information retrieval and natural language processing. The task of any Question Answering system is to seek an answer to a free form factual question. The difficulty of pinpointing and verifying the precise answer makes question answering more challenging than simple information retrieval done by search engines. Text REtrieval Conference (TREC) is a yearly conference which provides large - scale infrastructure and resources to support research in information retrieval domain. TREC has a question answering track since 1999 where the questions dataset contains a list of factual questions (Vorhees & Tice, 1999). DBpedia (Bizer et al., 2009) is a community driven effort to extract and structure the data present in Wikipedia.

The research objective of this thesis is to develop a novel approach to Question Answering based on a composition of conventional approaches of Information Retrieval and Natural Language processing. The focus is also on exploring the use of a structured and annotated knowledge base as opposed to an unstructured knowledge base. The knowledge base used here is DBpedia and the final system is evaluated on the TREC 2004 questions dataset.

Contributors

Agent

Created

Date Created
2016

158206-Thumbnail Image.png

Diversifying Relevant Search Results from Social Media Using Community Contributed Images

Description

Availability of affordable image and video capturing devices as well as rapid development of social networking and content sharing websites has led to the creation of new type of content, Social Media. Any system serving the end user’s query search

Availability of affordable image and video capturing devices as well as rapid development of social networking and content sharing websites has led to the creation of new type of content, Social Media. Any system serving the end user’s query search request should not only take the relevant images into consideration but they also need to be divergent for a well-rounded description of a query. As a result, the automated optimization of image retrieval results that are also divergent becomes exceedingly important.

The main focus of this thesis is to use visual description of a landmark by choosing the most diverse pictures that best describe all the details of the queried location from community-contributed datasets. For this, an end-to-end framework has been built, to retrieve relevant results that are also diverse. Different retrieval re-ranking and diversification strategies are evaluated to find a balance between relevance and diversification. Clustering techniques are employed to improve divergence. A unique fusion approach has been adopted to overcome the dilemma of selecting an appropriate clustering technique and the corresponding parameters, given a set of data to be investigated. Extensive experiments have been conducted on the Flickr Div150Cred dataset that has 30 different landmark locations. The results obtained are promising when evaluated on metrics for relevance and diversification.

Contributors

Agent

Created

Date Created
2020