Matching Items (4)

157895-Thumbnail Image.png

Evolution of telomerase RNA

Description

The highly specialized telomerase ribonucleoprotein enzyme is composed minimally of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) for catalytic activity. Telomerase is an RNA-dependent DNA polymerase that syntheizes DNA

The highly specialized telomerase ribonucleoprotein enzyme is composed minimally of telomerase reverse transcriptase (TERT) and telomerase RNA (TR) for catalytic activity. Telomerase is an RNA-dependent DNA polymerase that syntheizes DNA repeats at chromosome ends to maintain genome stability. While TERT is highly conserved among various groups of species, the TR subunit exhibits remarkable divergence in primary sequence, length, secondary structure and biogenesis, making TR identification extremely challenging even among closely related groups of organisms.

A unique computational approach combined with in vitro telomerase activity reconstitution studies was used to identify 83 novel TRs from 10 animal kingdom phyla spanning 18 diverse classes from the most basal sponges to the late evolving vertebrates. This revealed that three structural domains, pseudoknot, a distal stem-loop moiety and box H/ACA, are conserved within TRs from basal groups to vertebrates, while group-specific elements emerge or disappear during animal TR evolution along different lineages.

Next the corn-smut fungus Ustilago maydis TR was identified using an RNA-immunoprecipitation and next-generation sequencing approach followed by computational identification of TRs from 19 additional class Ustilaginomycetes fungi, leveraging conserved gene synteny among TR genes. Phylogenetic comparative analysis, in vitro telomerase activity and TR mutagenesis studies reveal a secondary structure of TRs from higher fungi, which is also conserved with vertebrates and filamentous fungi, providing a crucial link in TR evolution within the opisthokonta super-kingdom.

Lastly, work by collabarotors from Texas A&M university and others identified the first bona fide TR from the model plant Arabidopsis thaliana. Computational analysis was performed to identify 85 novel AtTR orthologs from three major plant clades: angiosperms, gymnosperms and lycophytes, which facilitated phylogenetic comparative analysis to infer the first plant TR secondary structural model. This model was confirmed using site-specific mutagenesis and telomerase activity assays of in vitro reconstituted enzyme. The structures of plant TRs are conserved across land plants providing an evolutionary bridge that unites the disparate structures of previously characterized TRs from ciliates and vertebrates.

Contributors

Agent

Created

Date Created
  • 2019

150811-Thumbnail Image.png

Improving expression vectors for recombinant protein production in plants

Description

Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems

Over the past decade, several high-value proteins have been produced using plant-based transient expression systems. However, these studies exposed some limitations that must be overcome to allow plant expression systems to reach their full potential. These limitations are the low level of recombinant protein accumulation achieved in some cases, and lack of efficient co-expression vectors for the production of multi-protein complexes. This study report that tobacco Extensin (Ext) gene 3' untranslated region (UTR) can be broadly used to enhance recombinant protein expression in plants. Extensin is the hydroxyproline-rich glycoprotein that constitutes the major protein component of cell walls. Using transient expression, it was found that the Ext 3' UTR increases recombinant protein expression up to 13.5- and 6-fold in non-replicating and replicating vector systems, respectively, compared to previously established terminators. Enhanced protein accumulation was correlated with increased mRNA levels associated with reduction in read-through transcription. Regions of Ext 3' UTR essential for maximum gene expression included a poly-purine sequence used as a major poly-adenylation site. Furthermore, modified bean yellow dwarf virus (BeYDV)-based vectors designed to allow co-expression of multiple recombinant genes were constructed and tested for their performance in driving transient expression in plants. Robust co-expression and assembly of heavy and light chains of the anti-Ebola virus monoclonal antibody 6D8, as well as E. coli heat-labile toxin (LT) were achieved with the modified vectors. The simultaneous co-expression of three fluoroproteins using the single replicon, triple cassette is demonstrated by confocal microscopy. In conclusion, this study provides an excellent tool for rapid, cost-effective, large-scale manufacturing of recombinant proteins for use in medicine and industry.

Contributors

Agent

Created

Date Created
  • 2012

153912-Thumbnail Image.png

Ecological effects of stream flow permanence on butterfly and plant communities of Sonoran Desert streams

Description

Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly

Stream flow permanence plays a critical role in determining floristic composition, abundance, and diversity in the Sonoran Desert, but questions remain about the effects of stream flow permanence on butterfly composition, abundance, and diversity. Understanding the effects of flow permanence on butterflies and relevant subsets of butterflies (such as butterflies whose host plants are present) and comparing them to these same effects on plants and relevant subsets of plants (such as butterfly nectar plants and larval host plants) provided insight into pollinator and riparian conservation and restoration.

I surveyed four Sonoran desert stream sites, and found significant relationships between flow permanence and plant and butterfly species richness and abundance, as well as strong relationships between plant and butterfly abundance and between plant and butterfly species richness. Most notably, my results pointed to hosted butterflies as a break-out category of butterflies which may more clearly delineate ecological relationships between butterfly and plant abundance and diversity along Sonoran Desert streams; this can inform conservation decisions. Managing for hosted (resident) butterflies will necessarily entail managing for the presence of surface water, nectar forage, varying levels of canopy cover, and plant, nectar plant, and host plant diversity since the relationships between hosted butterfly species richness and/or abundance and all of these variables were significant, both statistically and ecologically.

Contributors

Agent

Created

Date Created
  • 2015

149860-Thumbnail Image.png

Flora of Usery Mountain Regional Park and Pass Mountain region of Tonto National Forest, Arizona and distribution of Saguaro (Carnegniea gigantea) on Pass Mountain in southern Tonto National Forest

Description

This study was designed to produce a comprehensive flora of Usery Mountain Regional Park and Pass Mountain of the Tonto National Forest. A total of 168 vascular plant species representing

This study was designed to produce a comprehensive flora of Usery Mountain Regional Park and Pass Mountain of the Tonto National Forest. A total of 168 vascular plant species representing 46 families and 127 genera were collected or documented at this study area. Sixteen species were not native to the flora of Arizona and represent 9.5% of the flora. Nevertheless, the study area does not appear to be significantly damaged or degraded in spite of its historical and current land use. The location and types of invasive species recorded in this study will assist with implementing preventative measures to prevent further spreading of certain species. The complete list of all vascular species recorded in this study will provide a valuable tool for land management decisions and future restoration projects that may occur at this area or similar sites and invasive species control. The distribution of the saguaro (Carnegiea gigantea) population on Pass Mountain was documented through the measurement of saguaros by random sampling. ArcGIS was used to generate 50 random points for sampling the saguaro population. Analysis to determine saguaro habitat preferences based on the parameters of aspect, slope and elevation was conducted through ArcGIS. The saguaro population of Pass Mountain significantly favored the southern aspects with the highest concentration occurring in the southwest aspects at an average density of 42.66 saguaros per hectare. The large numbers of saguaros recorded in the younger size classes suggests a growing populations.

Contributors

Agent

Created

Date Created
  • 2011