Matching Items (10)

152696-Thumbnail Image.png

Optimal input signal design for data-centric identification and control with applications to behavioral health and medicine

Description

Increasing interest in individualized treatment strategies for prevention and treatment of health disorders has created a new application domain for dynamic modeling and control. Standard population-level clinical trials, while useful,

Increasing interest in individualized treatment strategies for prevention and treatment of health disorders has created a new application domain for dynamic modeling and control. Standard population-level clinical trials, while useful, are not the most suitable vehicle for understanding the dynamics of dosage changes to patient response. A secondary analysis of intensive longitudinal data from a naltrexone intervention for fibromyalgia examined in this dissertation shows the promise of system identification and control. This includes datacentric identification methods such as Model-on-Demand, which are attractive techniques for estimating nonlinear dynamical systems from noisy data. These methods rely on generating a local function approximation using a database of regressors at the current operating point, with this process repeated at every new operating condition. This dissertation examines generating input signals for data-centric system identification by developing a novel framework of geometric distribution of regressors and time-indexed output points, in the finite dimensional space, to generate sufficient support for the estimator. The input signals are generated while imposing “patient-friendly” constraints on the design as a means to operationalize single-subject clinical trials. These optimization-based problem formulations are examined for linear time-invariant systems and block-structured Hammerstein systems, and the results are contrasted with alternative designs based on Weyl's criterion. Numerical solution to the resulting nonconvex optimization problems is proposed through semidefinite programming approaches for polynomial optimization and nonlinear programming methods. It is shown that useful bounds on the objective function can be calculated through relaxation procedures, and that the data-centric formulations are amenable to sparse polynomial optimization. In addition, input design formulations are formulated for achieving a desired output and specified input spectrum. Numerical examples illustrate the benefits of the input signal design formulations including an example of a hypothetical clinical trial using the drug gabapentin. In the final part of the dissertation, the mixed logical dynamical framework for hybrid model predictive control is extended to incorporate a switching time strategy, where decisions are made at some integer multiple of the sample time, and manipulation of only one input at a given sample time among multiple inputs. These are considerations important for clinical use of the algorithm.

Contributors

Agent

Created

Date Created
  • 2014

156507-Thumbnail Image.png

Process Control Applications in Microbial Fuel Cells(MFC)

Description

Microbial fuel cells(MFC) use micro-organisms called anode-respiring bacteria(ARB) to convert chemical energy into electrical energy. This process can not only treat wastewater but can also produce useful byproduct hydrogen peroxide(H2O2).

Microbial fuel cells(MFC) use micro-organisms called anode-respiring bacteria(ARB) to convert chemical energy into electrical energy. This process can not only treat wastewater but can also produce useful byproduct hydrogen peroxide(H2O2). Process variables like anode potential and pH play important role in the MFC operation and the focus of this dissertation are pH and potential control problems.

Most of the adaptive pH control solutions use signal-based-norms as cost functions, but their strong dependency on excitation signal properties makes them sensitive to noise, disturbances, and modeling errors. System-based-norm( H-infinity) cost functions provide a viable alternative for the adaptation as they are less susceptible to the signal properties. Two variants of adaptive pH control algorithms that use approximate H-infinity frequency loop-shaping (FLS) cost metrics are proposed in this dissertation.

A pH neutralization process with high retention time is studied using lab scale experiments and the experimental setup is used as a basis to develop a first-principles model. The analysis of such a model shows that only the gain of the process varies significantly with operating conditions and with buffering capacity. Consequently, the adaptation of the controller gain (single parameter) is sufficient to compensate for the variation in process gain and the focus of the proposed algorithms is the adaptation of the PI controller gain. Computer simulations and lab-scale experiments are used to study tracking, disturbance rejection and adaptation performance of these algorithms under different excitation conditions. Results show the proposed algorithm produces optimum that is less dependent on the excitation as compared to a commonly used L2 cost function based algorithm and tracks set-points reasonably well under practical conditions. The proposed direct pH control algorithm is integrated with the combined activated sludge anaerobic digestion model (CASADM) of an MFC and it is shown pH control improves its performance.

Analytical grade potentiostats are commonly used in MFC potential control, but, their high cost (>$6000) and large size, make them nonviable for the field usage. This dissertation proposes an alternate low-cost($200) portable potentiostat solution. This potentiostat is tested using a ferricyanide reactor and results show it produces performance close to an analytical grade potentiostat.

Contributors

Agent

Created

Date Created
  • 2018

153820-Thumbnail Image.png

System identification of linear and switching regulators using switched capacitor correlator

Description

Power Management circuits are employed in almost all electronic equipment and they have energy storage elements (capacitors and inductors) as building blocks along with other active circuitry. Power management circuits

Power Management circuits are employed in almost all electronic equipment and they have energy storage elements (capacitors and inductors) as building blocks along with other active circuitry. Power management circuits employ feedback to achieve good load and line regulation. The feedback loop is designed at an operating point and component values are chosen to meet that design requirements. But the capacitors and inductors are subject to variations due to temperature, aging and load stress. Due to these variations, the feedback loop can cross its robustness margins and can lead to degraded performance and potential instability. Another issue in power management circuits is the measurement of their frequency response for stability assessment. The standard techniques used in production test environment require expensive measurement equipment (Network Analyzer) and time. These two issues of component variations and frequency response measurement can be addressed if the frequency response of the power converter is used as measure of component (capacitor and inductor) variations. So, a single solution of frequency response measurement solves both the issues. This work examines system identification (frequency response measurement) of power management circuits based on cross correlation technique and proposes the use of switched capacitor correlator for this purpose. A switched capacitor correlator has been designed and used in the system identification of Linear and Switching regulators. The obtained results are compared with the standard frequency response measurement methods of power converters.

Contributors

Agent

Created

Date Created
  • 2015

154920-Thumbnail Image.png

A system identification and control engineering approach for optimizing mHealth behavioral interventions based on social cognitive theory

Description

Behavioral health problems such as physical inactivity are among the main causes of mortality around the world. Mobile and wireless health (mHealth) interventions offer the opportunity for applying control engineering

Behavioral health problems such as physical inactivity are among the main causes of mortality around the world. Mobile and wireless health (mHealth) interventions offer the opportunity for applying control engineering concepts in behavioral change settings. Social Cognitive Theory (SCT) is among the most influential theories of health behavior and has been used as the conceptual basis of many behavioral interventions. This dissertation examines adaptive behavioral interventions for physical inactivity problems based on SCT using system identification and control engineering principles. First, a dynamical model of SCT using fluid analogies is developed. The model is used throughout the dissertation to evaluate system identification approaches and to develop control strategies based on Hybrid Model Predictive Control (HMPC). An initial system identification informative experiment is designed to obtain basic insights about the system. Based on the informative experimental results, a second optimized experiment is developed as the solution of a formal constrained optimization problem. The concept of Identification Test Monitoring (ITM) is developed for determining experimental duration and adjustments to the input signals in real time. ITM relies on deterministic signals, such as multisines, and uncertainty regions resulting from frequency domain transfer function estimation that is performed during experimental execution. ITM is motivated by practical considerations in behavioral interventions; however, a generalized approach is presented for broad-based multivariable application settings such as process control. Stopping criteria for the experimental test utilizing ITM are developed using both open-loop and robust control considerations.

A closed-loop intensively adaptive intervention for physical activity is proposed relying on a controller formulation based on HMPC. The discrete and logical features of HMPC naturally address the categorical nature of the intervention components that include behavioral goals and reward points. The intervention incorporates online controller reconfiguration to manage the transition between the behavioral initiation and maintenance training stages. Simulation results are presented to illustrate the performance of the system using a model for a hypothetical participant under realistic conditions that include uncertainty. The contributions of this dissertation can ultimately impact novel applications of cyberphysical system in medical applications.

Contributors

Agent

Created

Date Created
  • 2016

155115-Thumbnail Image.png

A system identification approach to dynamically modeling and understanding physical activity behaviors

Description

The lack of healthy behaviors - such as physical activity and balanced diet - in

modern society is responsible for a large number of diseases and high mortality rates in

the world.

The lack of healthy behaviors - such as physical activity and balanced diet - in

modern society is responsible for a large number of diseases and high mortality rates in

the world. Adaptive behavioral interventions have been suggested as a way to promote

sustained behavioral changes to address these issues. These adaptive interventions

can be modeled as closed-loop control systems, and thus applying control systems

engineering and system identification principles to behavioral settings might provide

a novel way of improving the quality of such interventions.

Good understanding of the dynamic processes involved in behavioral experiments

is a fundamental step in order to design such interventions with control systems ideas.

In the present work, two different behavioral experiments were analyzed under the

light of system identification principles and modelled as dynamic systems.

In the first study, data gathered over the course of four days served as the basis for

ARX modeling of the relationship between psychological constructs (negative affect

and self-efficacy) and the intensity of physical activity. The identified models suggest

that this behavioral process happens with self-regulation, and that the relationship

between negative affect and self-efficacy is represented by a second order underdamped

system with negative gain, while the relationship between self-efficacy and physical

activity level is an overdamped second order system with positive gain.

In the second study, which consisted of single-bouts of intense physical activity,

the relation between a more complex set of behavioral variables was identified as a

semi-physical model, with a theoretical set of system equations derived from behavioral

theory. With a prescribed set of physical activity intensities, it was found that less fit

participants were able to get higher increases in affective state, and that self-regulation

processes are also involved in the system.

Contributors

Agent

Created

Date Created
  • 2016

150319-Thumbnail Image.png

Non-linear system identification using compressed sensing

Description

This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an

This thesis describes an approach to system identification based on compressive sensing and demonstrates its efficacy on a challenging classical benchmark single-input, multiple output (SIMO) mechanical system consisting of an inverted pendulum on a cart. Due to its inherent non-linearity and unstable behavior, very few techniques currently exist that are capable of identifying this system. The challenge in identification also lies in the coupled behavior of the system and in the difficulty of obtaining the full-range dynamics. The differential equations describing the system dynamics are determined from measurements of the system's input-output behavior. These equations are assumed to consist of the superposition, with unknown weights, of a small number of terms drawn from a large library of nonlinear terms. Under this assumption, compressed sensing allows the constituent library elements and their corresponding weights to be identified by decomposing a time-series signal of the system's outputs into a sparse superposition of corresponding time-series signals produced by the library components. The most popular techniques for non-linear system identification entail the use of ANN's (Artificial Neural Networks), which require a large number of measurements of the input and output data at high sampling frequencies. The method developed in this project requires very few samples and the accuracy of reconstruction is extremely high. Furthermore, this method yields the Ordinary Differential Equation (ODE) of the system explicitly. This is in contrast to some ANN approaches that produce only a trained network which might lose fidelity with change of initial conditions or if facing an input that wasn't used during its training. This technique is expected to be of value in system identification of complex dynamic systems encountered in diverse fields such as Biology, Computation, Statistics, Mechanics and Electrical Engineering.

Contributors

Agent

Created

Date Created
  • 2011

150824-Thumbnail Image.png

System identification via basis pursuit

Description

This thesis considers the application of basis pursuit to several problems in system identification. After reviewing some key results in the theory of basis pursuit and compressed sensing, numerical experiments

This thesis considers the application of basis pursuit to several problems in system identification. After reviewing some key results in the theory of basis pursuit and compressed sensing, numerical experiments are presented that explore the application of basis pursuit to the black-box identification of linear time-invariant (LTI) systems with both finite (FIR) and infinite (IIR) impulse responses, temporal systems modeled by ordinary differential equations (ODE), and spatio-temporal systems modeled by partial differential equations (PDE). For LTI systems, the experimental results illustrate existing theory for identification of LTI FIR systems. It is seen that basis pursuit does not identify sparse LTI IIR systems, but it does identify alternate systems with nearly identical magnitude response characteristics when there are small numbers of non-zero coefficients. For ODE systems, the experimental results are consistent with earlier research for differential equations that are polynomials in the system variables, illustrating feasibility of the approach for small numbers of non-zero terms. For PDE systems, it is demonstrated that basis pursuit can be applied to system identification, along with a comparison in performance with another existing method. In all cases the impact of measurement noise on identification performance is considered, and it is empirically observed that high signal-to-noise ratio is required for successful application of basis pursuit to system identification problems.

Contributors

Agent

Created

Date Created
  • 2012

Model agnostic extreme sub-pixel visual measurement and optimal characterization

Description

It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration

It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement on conventional real-world performance. These measurements are then used as inputs for a model optimal, model agnostic, smoothing for calibration of a laser scribe and online tracking of velocimeter using video input. Using appropriate smooth interpolation to increase effective sample density can reduce uncertainty and improve estimates. Use of the proper negative offset of the template function has the result of creating a convolution with higher local curvature than either template of target function which allows improved center-finding. Using the Akaike Information Criterion with a smoothing spline function it is possible to perform a model-optimal smooth on scalar measurements without knowing the underlying model and to determine the function describing the uncertainty in that optimal smooth. An example of empiric derivation of the parameters for a rudimentary Kalman Filter from this is then provided, and tested. Using the techniques of Exploratory Data Analysis and the "Formulize" genetic algorithm tool to convert the spline models into more accessible analytic forms resulted in stable, properly generalized, KF with performance and simplicity that exceeds "textbook" implementations thereof. Validation of the measurement includes that, in analytic case, it led to arbitrary precision in measurement of feature; in reasonable test case using the methods proposed, a reasonable and consistent maximum error of around 0.3% the length of a pixel was achieved and in practice using pixels that were 700nm in size feature position was located to within ± 2 nm. Robust applicability is demonstrated by the measurement of indicator position for a King model 2-32-G-042 rotameter.

Contributors

Agent

Created

Date Created
  • 2012

154835-Thumbnail Image.png

PID controller tuning and adaptation of a buck converter

Description

Buck converters are electronic devices that changes a voltage from one level to a lower one and are present in many everyday applications. However, due to factors like aging, degradation

Buck converters are electronic devices that changes a voltage from one level to a lower one and are present in many everyday applications. However, due to factors like aging, degradation or failures, these devices require a system identification process to track and diagnose their parameters. The system identification process should be performed on-line to not affect the normal operation of the device. Identifying the parameters of the system is essential to design and tune an adaptive proportional-integral-derivative (PID) controller.

Three techniques were used to design the PID controller. Phase and gain margin still prevails as one of the easiest methods to design controllers. Pole-zero cancellation is another technique which is based on pole-placement. However, although these controllers can be easily designed, they did not provide the best response compared to the Frequency Loop Shaping (FLS) technique. Therefore, since FLS showed to have a better frequency and time responses compared to the other two controllers, it was selected to perform the adaptation of the system.

An on-line system identification process was performed for the buck converter using indirect adaptation and the least square algorithm. The estimation error and the parameter error were computed to determine the rate of convergence of the system. The indirect adaptation required about 2000 points to converge to the true parameters prior designing the controller. These results were compared to the adaptation executed using robust stability condition (RSC) and a switching controller. Two different scenarios were studied consisting of five plants that defined the percentage of deterioration of the capacitor and inductor within the buck converter. The switching logic did not always select the optimal controller for the first scenario because the frequency response of the different plants was not significantly different. However, the second scenario consisted of plants with more noticeable different frequency responses and the switching logic selected the optimal controller all the time in about 500 points. Additionally, a disturbance was introduced at the plant input to observe its effect in the switching controller. However, for reasonable low disturbances no change was detected in the proper selection of controllers.

Contributors

Agent

Created

Date Created
  • 2016

149854-Thumbnail Image.png

A control engineering approach for designing an optimized treatment plan for fibromyalgia

Description

There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment

There is increasing interest in the medical and behavioral health communities towards developing effective strategies for the treatment of chronic diseases. Among these lie adaptive interventions, which consider adjusting treatment dosages over time based on participant response. Control engineering offers a broad-based solution framework for optimizing the effectiveness of such interventions. In this thesis, an approach is proposed to develop dynamical models and subsequently, hybrid model predictive control schemes for assigning optimal dosages of naltrexone, an opioid antagonist, as treatment for a chronic pain condition known as fibromyalgia. System identification techniques are employed to model the dynamics from the daily diary reports completed by participants of a blind naltrexone intervention trial. These self-reports include assessments of outcomes of interest (e.g., general pain symptoms, sleep quality) and additional external variables (disturbances) that affect these outcomes (e.g., stress, anxiety, and mood). Using prediction-error methods, a multi-input model describing the effect of drug, placebo and other disturbances on outcomes of interest is developed. This discrete time model is approximated by a continuous second order model with zero, which was found to be adequate to capture the dynamics of this intervention. Data from 40 participants in two clinical trials were analyzed and participants were classified as responders and non-responders based on the models obtained from system identification. The dynamical models can be used by a model predictive controller for automated dosage selection of naltrexone using feedback/feedforward control actions in the presence of external disturbances. The clinical requirement for categorical (i.e., discrete-valued) drug dosage levels creates a need for hybrid model predictive control (HMPC). The controller features a multiple degree-of-freedom formulation that enables the user to adjust the speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance rejection independently in the closed loop system. The nominal and robust performance of the proposed control scheme is examined via simulation using system identification models from a representative participant in the naltrexone intervention trial. The controller evaluation described in this thesis gives credibility to the promise and applicability of control engineering principles for optimizing adaptive interventions.

Contributors

Agent

Created

Date Created
  • 2011