Matching Items (3)
Filtering by

Clear all filters

150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
Description
This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project

This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project explores the evolution of bulk stress that occurs during intercalation (extraction) of lithium (Li) and formation of a solid electrolyte interphase during electrochemical reduction (oxidation) of Li at graphitic electrodes. Electrocapillarity measurements have shown that hydrogen and hydroxide adsorption are compressive on Pt{111}, Ru/Pt{111}, and Ru{0001}. The adsorption-induced surface stresses correlate strongly with adsorption charge. Electrocatalytic oxidation of CO on Pt{111} and Ru/Pt{111} gives a tensile surface stress. A numerical method was developed to separate both current and stress into background and active components. Applying this model to the CO oxidation signal on Ru{0001} gives a tensile surface stress and elucidates the rate limiting steps on all three electrodes. The enhanced catalysis of Ru/Pt{111} is confirmed to be bi-functional in nature: Ru provides adsorbed hydroxide to Pt allowing for rapid CO oxidation. The majority of Li-ion batteries have anodes consisting of graphite particles with polyvinylidene fluoride (PVDF) as binder. Intercalation of Li into graphite occurs in stages and produces anisotropic strains. As batteries have a fixed size and shape these strains are converted into mechanical stresses. Conventionally staging phenomena has been observed with X-ray diffraction and collaborated electrochemically with the potential. Work herein shows that staging is also clearly observed in stress. The Li staging potentials as measured by differential chronopotentiometry and stress are nearly identical. Relative peak heights of Li staging, as measured by these two techniques, are similar during reduction, but differ during oxidation due to non-linear stress relaxation phenomena. This stress relaxation appears to be due to homogenization of Li within graphite particles rather than viscous flow of the binder. The first Li reduction wave occurs simultaneously with formation of a passivating layer known as the solid electrolyte interphase (SEI). Preliminary experiments have shown the stress of SEI formation to be tensile (~+1.5 MPa).
ContributorsMickelson, Lawrence (Author) / Friesen, Cody (Thesis advisor) / Sieradzki, Karl (Committee member) / Buttry, Daniel (Committee member) / Venables, John (Committee member) / Arizona State University (Publisher)
Created2011
154119-Thumbnail Image.png
Description
Structural details of phosphonic acid functionalized nanomaterials and protic ionic liquids (PILs) were characterized using nuclear magnetic resonance (NMR) spectroscopy. It is well known that ligands play a critical role in the synthesis and properties of nanomaterials. Therefore, elucidating the details of ligand-surface and ligand-ligand interactions is crucial to

Structural details of phosphonic acid functionalized nanomaterials and protic ionic liquids (PILs) were characterized using nuclear magnetic resonance (NMR) spectroscopy. It is well known that ligands play a critical role in the synthesis and properties of nanomaterials. Therefore, elucidating the details of ligand-surface and ligand-ligand interactions is crucial to understanding nanomaterial systems more completely.

In an effort to further the understanding of ligand-surface interactions, a combination of multi-nuclear (1H, 29Si, 31P) and multi-dimensional solid-state NMR techniques were utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methyl phosphonic acid (MPA) and phenyl phosphonic acid (PPA). Quantitative 31P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. Furthermore, 1H-1H single quantum-double quantum (SQ-DQ) back-to-back (BABA) 2D NMR spectra of silica functionalized with MPA and PPA indicate that the MPA and PPA are within 4.2±0.2 Å on the surface of the nanomaterial.

The ligand capping of phosphonic acid (PA) functionalized CdSe/ZnS core-shell quantum dots (QDs) was investigated with a combination of ligand exchange, solution and solid-state 31P NMR spectroscopy. In order to quantify the ligand populations on the surface of the QDs, ligand exchange facilitated by PPA resulted in the displacement of the PAs, and allowed for quantification of the free ligands using 31P liquid state NMR.

In addition to characterizing nanomaterials, the ionicity and transport properties of a series of diethylmethylamine (DEMA) based protic ionic liquids (PILs) were characterized, principally utilizing NMR. Gas phase proton affinity was shown to be a better predictor for the extent of proton transfer, and in turn the ionicity of the PIL, than using ∆pKa. Furthermore, pulsed field gradient (PFG) NMR was used to determine that the exchangeable proton diffuses with the cation or the anion based on the strength of the acid used to generate the PILs.
ContributorsDavidowski, Stephen (Author) / Yarger, Jeffery L. (Thesis advisor) / Holland, Gregory P (Thesis advisor) / Angell, Charles A. (Committee member) / Buttry, Daniel A. (Committee member) / Arizona State University (Publisher)
Created2015