Matching Items (13)
Filtering by

Clear all filters

156177-Thumbnail Image.png
Description
The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second

The activation of the primary motor cortex (M1) is common in speech perception tasks that involve difficult listening conditions. Although the challenge of recognizing and discriminating non-native speech sounds appears to be an instantiation of listening under difficult circumstances, it is still unknown if M1 recruitment is facilitatory of second language speech perception. The purpose of this study was to investigate the role of M1 associated with speech motor centers in processing acoustic inputs in the native (L1) and second language (L2), using repetitive Transcranial Magnetic Stimulation (rTMS) to selectively alter neural activity in M1. Thirty-six healthy English/Spanish bilingual subjects participated in the experiment. The performance on a listening word-to-picture matching task was measured before and after real- and sham-rTMS to the orbicularis oris (lip muscle) associated M1. Vowel Space Area (VSA) obtained from recordings of participants reading a passage in L2 before and after real-rTMS, was calculated to determine its utility as an rTMS aftereffect measure. There was high variability in the aftereffect of the rTMS protocol to the lip muscle among the participants. Approximately 50% of participants showed an inhibitory effect of rTMS, evidenced by smaller motor evoked potentials (MEPs) area, whereas the other 50% had a facilitatory effect, with larger MEPs. This suggests that rTMS has a complex influence on M1 excitability, and relying on grand-average results can obscure important individual differences in rTMS physiological and functional outcomes. Evidence of motor support to word recognition in the L2 was found. Participants showing an inhibitory aftereffect of rTMS on M1 produced slower and less accurate responses in the L2 task, whereas those showing a facilitatory aftereffect of rTMS on M1 produced more accurate responses in L2. In contrast, no effect of rTMS was found on the L1, where accuracy and speed were very similar after sham- and real-rTMS. The L2 VSA measure was indicative of the aftereffect of rTMS to M1 associated with speech production, supporting its utility as an rTMS aftereffect measure. This result revealed an interesting and novel relation between cerebral motor cortex activation and speech measures.
ContributorsBarragan, Beatriz (Author) / Liss, Julie (Thesis advisor) / Berisha, Visar (Committee member) / Rogalsky, Corianne (Committee member) / Restrepo, Adelaida (Committee member) / Arizona State University (Publisher)
Created2018
155273-Thumbnail Image.png
Description
Audiovisual (AV) integration is a fundamental component of face-to-face communication. Visual cues generally aid auditory comprehension of communicative intent through our innate ability to “fuse” auditory and visual information. However, our ability for multisensory integration can be affected by damage to the brain. Previous neuroimaging studies have indicated the superior

Audiovisual (AV) integration is a fundamental component of face-to-face communication. Visual cues generally aid auditory comprehension of communicative intent through our innate ability to “fuse” auditory and visual information. However, our ability for multisensory integration can be affected by damage to the brain. Previous neuroimaging studies have indicated the superior temporal sulcus (STS) as the center for AV integration, while others suggest inferior frontal and motor regions. However, few studies have analyzed the effect of stroke or other brain damage on multisensory integration in humans. The present study examines the effect of lesion location on auditory and AV speech perception through behavioral and structural imaging methodologies in 41 left-hemisphere participants with chronic focal cerebral damage. Participants completed two behavioral tasks of speech perception: an auditory speech perception task and a classic McGurk paradigm measuring congruent (auditory and visual stimuli match) and incongruent (auditory and visual stimuli do not match, creating a “fused” percept of a novel stimulus) AV speech perception. Overall, participants performed well above chance on both tasks. Voxel-based lesion symptom mapping (VLSM) across all 41 participants identified several regions as critical for speech perception depending on trial type. Heschl’s gyrus and the supramarginal gyrus were identified as critical for auditory speech perception, the basal ganglia was critical for speech perception in AV congruent trials, and the middle temporal gyrus/STS were critical in AV incongruent trials. VLSM analyses of the AV incongruent trials were used to further clarify the origin of “errors”, i.e. lack of fusion. Auditory capture (auditory stimulus) responses were attributed to visual processing deficits caused by lesions in the posterior temporal lobe, whereas visual capture (visual stimulus) responses were attributed to lesions in the anterior temporal cortex, including the temporal pole, which is widely considered to be an amodal semantic hub. The implication of anterior temporal regions in AV integration is novel and warrants further study. The behavioral and VLSM results are discussed in relation to previous neuroimaging and case-study evidence; broadly, our findings coincide with previous work indicating that multisensory superior temporal cortex, not frontal motor circuits, are critical for AV integration.
ContributorsCai, Julia (Author) / Rogalsky, Corianne (Thesis advisor) / Azuma, Tamiko (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2017
168329-Thumbnail Image.png
Description
Repetitive practice of functional movement patterns during motor rehabilitation are known to drive learning (or relearning) of novel motor skills, but the learning process is highly variable between individuals such that responsiveness to task-specific training is often patient-specific. A number of neuroimaging and neurophysiological methods have been proposed to better

Repetitive practice of functional movement patterns during motor rehabilitation are known to drive learning (or relearning) of novel motor skills, but the learning process is highly variable between individuals such that responsiveness to task-specific training is often patient-specific. A number of neuroimaging and neurophysiological methods have been proposed to better predict a patient’s responsiveness to a given type or dose of motor therapy. However, these methods are often time- and resource-intensive, and yield results that are not readily interpretable by clinicians. In contrast, standardized visuospatial tests may offer a more feasible solution. The work presented in this dissertation demonstrate that a clinical paper-and-pencil test of visuospatial function may improve predictive models of motor skill learning in older adults and individuals with stroke pathology. To further our understanding of the neuroanatomical correlates underlying this behavioral relationship, I collected diffusion-weighted magnetic resonance images from 19 nondemented older adults to determine if diffusion characteristics of white matter tracts explain shared variance in delayed visuospatial memory test scores and motor skill learning. Consistent with previous work, results indicated that the structural integrity of regions with the bilateral anterior thalamic radiations, corticospinal tracts, and superior longitudinal fasciculi are related to delayed visuospatial memory performance and one-week skill retention. Overall, results of this dissertation suggest that incorporating a clinical paper-and-pencil test of delayed visuospatial memory may prognose motor rehabilitation outcomes and support that personalized variables should be considered in standards of care. Moreover, regions within specific white matter tracts may underlie this behavioral relationship and future work should investigate these regions as potential targets for therapeutic intervention.
ContributorsLingo VanGilder, Jennapher (Author) / Schaefer, Sydney Y (Thesis advisor) / Santello, Marco (Committee member) / Buneo, Christopher (Committee member) / Rogalsky, Corianne (Committee member) / Duff, Kevin (Committee member) / Arizona State University (Publisher)
Created2021
161713-Thumbnail Image.png
Description
Individuals with autism spectrum disorder (ASD) are known to show impairments in various domains of executive function (EF) such as behavioral flexibility or inhibitory control. Research suggests that EF impairment in adults with ASD may relate to ASD core symptoms, restrictive behaviors and social communication deficits. Mindfulness-based stress

Individuals with autism spectrum disorder (ASD) are known to show impairments in various domains of executive function (EF) such as behavioral flexibility or inhibitory control. Research suggests that EF impairment in adults with ASD may relate to ASD core symptoms, restrictive behaviors and social communication deficits. Mindfulness-based stress reduction (MBSR) has shown promise for improving EF abilities in neurotypical adults, but research has not explored its efficacy or neural mechanisms in adults with ASD. This pilot study examines the effects of an 8-week MBSR intervention on self-report measures of EF and resting-state functional connectivity in a sample of adults with ASD. Fifty-four participants were assigned either to an MBSR group (n = 29) or a social support group (n = 25). Executive function was measured using the BRIEF-2 before and after the intervention for the twenty-seven participants in the second cohort. MBSR-specific improvements in EF were found for BRIEF measures of initiation, inhibition, and working-memory. Resting-state fMRI data was analyzed using independent component analysis (ICA), and group by time resting-state functional connectivity differences were observed between the cerebellar network and frontal regions including the right frontal pole (rFP), medial frontal cortex (MFC) and left and right superior frontal gyri (SFG). The MBSR group showed increases in functional connectivity between the cerebellum and EF regions which correlated with improvements in BRIEF-2 measures. These findings suggest that MBSR may improve EF domains in adults with ASD, and that increases in functional connectivity between the cerebellum and frontal regions while at rest may be a mechanism for such improvements.
ContributorsGuerithault, Nicolas (Author) / Braden, B. Blair (Thesis advisor) / Rogalsky, Corianne (Committee member) / Dixon, Maria (Committee member) / Arizona State University (Publisher)
Created2021
187362-Thumbnail Image.png
Description
ABSTRACTAutism spectrum disorder (ASD) is a neurodevelopmental condition associated with social communication challenges and restrictive and repetitive behaviors [2]. Despite known lifelong challenges, understanding of cognitive and brain aging with ASD is lacking. Middle-aged adults with ASD have a higher chance of developing Alzheimer’s disease (Alz) and other dementias compared

ABSTRACTAutism spectrum disorder (ASD) is a neurodevelopmental condition associated with social communication challenges and restrictive and repetitive behaviors [2]. Despite known lifelong challenges, understanding of cognitive and brain aging with ASD is lacking. Middle-aged adults with ASD have a higher chance of developing Alzheimer’s disease (Alz) and other dementias compared to neurotypical (NT) adults [12]. Apolipoprotein E (APOE) is a lipid transport protein involved in neuronal repair and cholesterol transport and is the strongest genetic risk factor for Alz [22]. Others demonstrated that individuals with ASD are more likely to carry the APOE ε4-allele [21]. This study aimed to determine if the APOE ε4-allele negatively impacts verbal learning and memory in ASD compared to NT adults. Participants were intellectually able 76 middle-age and older adults (MA+) between the ages of 40-71, including 35 with ASD [mean age=53.06 (±8.91)] and 41 NT adults [mean age=53.90 (±8.44)]. APOE allelic distribution was determined from salivary samples via polymerase chain reaction amplification and genotyped on a tapestation. The Auditory Verbal Learning Test (AVLT) variables were short-term memory, long-term memory, and total learning. There was a main effect of APOE ε4 for short-term memory and verbal learning, with ε4 carriers performing worse across diagnosis groups. For verbal learning, sex was a significant predictor. So, exploratory analyses separating diagnosis groups by sex were conducted. Only males with ASD were found to be carrying APOE ε4 associated with reduced verbal learning (p=0.02). Finally, the APOE ε4-allele did not significantly affect the participants’ long-term memory. These findings suggest that the APOE ε4-allele negatively impacts short-term memory and verbal learning in MA+ adults, and that autistic men may be particularly vulnerable to the effects of APOE ε4 on verbal learning. This study is the first to incorporate ASD in APOE’s association with cognition and investigate how sex differences impact memory function. Future research is needed to replicate these findings using a larger sample size to further understand how the ε4-allele affects memory function trajectories in MA+ ASD as they grow older.
ContributorsAl-Hassan, Lamees (Author) / Braden, Blair (Thesis advisor) / Lewis, Candace (Committee member) / Rogalsky, Corianne (Committee member) / Arizona State University (Publisher)
Created2023
187423-Thumbnail Image.png
Description
Diffusion weighted imaging utilizes magnetic resonance imaging to capture white matter tracts in the brain. Many studies have utilized this technique to measure white matter structures looking for evidence of anatomical and physiological differences in Autism Spectrum Disorder (ASD). Parkinsonian-like symptoms have been documented and self-reported in aging autistic individuals,

Diffusion weighted imaging utilizes magnetic resonance imaging to capture white matter tracts in the brain. Many studies have utilized this technique to measure white matter structures looking for evidence of anatomical and physiological differences in Autism Spectrum Disorder (ASD). Parkinsonian-like symptoms have been documented and self-reported in aging autistic individuals, opening up questions about a possible link between ASD and an increased risk of Parkinson’s Disease. Utilizing MRtrix3, an image processing proof-of-concept pipeline was developed for the Autism and Brain Aging (ABA) lab to generate and visualize the brain’s structural connectivity network in these populations of interest. The pipeline provides the opportunity for white matter tractography analysis in the lab’s Aging in Autism study.
ContributorsFeldman, Leslie (Author) / Ofori, Edward (Thesis advisor) / Braden, Blair (Committee member) / Rogalsky, Corianne (Committee member) / Arizona State University (Publisher)
Created2023
187648-Thumbnail Image.png
Description
The corpus callosum is a core white matter structure that sits at the center of the brain, playing a role in both interhemispheric communication and the inhibition of hemispheric activity to promote lateralization. Structural connectivity is thought to underlie functional connectivity (FC), but cases of structural brain abnormalities allow for

The corpus callosum is a core white matter structure that sits at the center of the brain, playing a role in both interhemispheric communication and the inhibition of hemispheric activity to promote lateralization. Structural connectivity is thought to underlie functional connectivity (FC), but cases of structural brain abnormalities allow for a better understanding of this relationship. Agenesis of the corpus callosum (AgCC) is a condition in which an individual is born without a corpus callosum. These individuals provide a unique opportunity to investigate ways in which the brain adapts its functional organization to the lack of interhemispheric structural connectivity, thereby providing unique insights into brain network organization within and between the two cerebral hemispheres. The present study uses resting-state functional magnetic resonance imaging (fMRI) to compare the network connectivity of an individual with AgCC without any significant comorbidities to a control group of neurotypical adults (n=30). Potential differences of FC within the default mode network and frontoparietal network, as well as FC between these networks and bilateral language networks were examined. The AgCC individual displayed significantly higher FC within the frontoparietal network (t(29)=1.84, p<0.05) and significantly lower FC between the default mode network and the right ventral language stream (t(29)=-1.81, p<0.05) compared to the control group. Further analyses suggest that the right hemisphere’s frontoparietal network is driving the significant difference between the case study and control group in the frontoparietal network. The stronger FC of the frontoparietal network may represent a compensatory strategy used to support lower overall levels of default mode network and dual stream language network connectivity. Overall, the findings suggest that decreased interhemispheric structural connectivity may lead to increased compensation via attention networks such as the frontoparietal network, and decreased right hemisphere language network involvement.
ContributorsDungca, Lalaine Rose (Author) / Rogalsky, Corianne (Thesis advisor) / Schaefer, Sydney (Committee member) / Braden, Blair (Committee member) / Arizona State University (Publisher)
Created2023
171839-Thumbnail Image.png
Description
Autism shows a pronounced and replicable sex bias with approximately three-to-four males diagnosed for every one female. Sex-related biology is thought to play a role in the sex bias, such that female biology may be protective and/or male biology may increase vulnerability to autism in the context of similar genetic

Autism shows a pronounced and replicable sex bias with approximately three-to-four males diagnosed for every one female. Sex-related biology is thought to play a role in the sex bias, such that female biology may be protective and/or male biology may increase vulnerability to autism in the context of similar genetic risk. Beyond etiology, sex-related biology has also been implicated in lifespan risk for health and psychiatric conditions that show common co-morbidity in autism. Thus, understanding how sex-related biology impacts autism etiology and progression has important implications for prognosis and treatment. Neuroimaging offers a powerful tool for in-vivo characterization of brain-based sex differences in autism, especially given emerging efforts to develop large, well-characterized longitudinal samples. To date, however, neuroimaging studies have shown mixed and inconsistent findings, which remain challenging to integrate in the broader literature context. In a recent systematic review of neuroimaging studies of typical sex differences, few to no replicable effects were found beyond brain size, suggesting the brain is not “sexually dimorphic.” Instead, it is argued that the brain is a “mosaic” of features from various sources, including masculine and feminine biological processes as well as individual genetics and environment. Thus, designing neuroimaging studies that are sensitive to brain-based sex differences in autism likely requires careful study design and analytical method selection. Through a series of studies, the overarching dissertation aim was to identify optimal methods for characterizing neuroimaging-based sex differences in autism and to test these methods in preliminary samples. Study 1 comprised a systematic review of studies examining neuroimaging-based sex differences in autism with the aim of identifying optimal study designs, neuroimaging modalities, and analytical methods. Study 2 focused on examining the sensitivity of a connectome-wide approach to identify functional connectivity hubs underlying sex-biased behavior associated with autism (e.g., camouflaging). Study 3 used a connectome-wide functional connectivity approach to characterize sex differences in longitudinal changes associated with autistic traits vs. categorical diagnosis. These studies suggest that optimizing study design and methods improves identification of biologically plausible and clinically meaningful brain sex differences in autism. The relevance of findings to etiology and prognosis are discussed.
ContributorsWalsh, Melissa (Author) / Braden, B. Blair (Thesis advisor) / Azuma, Tamiko (Committee member) / Rogalsky, Corianne (Committee member) / Arizona State University (Publisher)
Created2022
172003-Thumbnail Image.png
Description
Objective: Previous studies have observed that adults with dyslexia display a reduced N1 gating when exposed to repetitive stimuli. Robust gating is associated with the ability to recognize familiar stimuli and identify the stimuli that will need novel memory representations formed. This study investigates if the mismatch negativity component in

Objective: Previous studies have observed that adults with dyslexia display a reduced N1 gating when exposed to repetitive stimuli. Robust gating is associated with the ability to recognize familiar stimuli and identify the stimuli that will need novel memory representations formed. This study investigates if the mismatch negativity component in electroencephalographic-produced Event-Related Potentials (ERPs) is affected as well by diminished memory forming in adults with dyslexia. Additionally, signal/ noise processing for auditory-based memory recollection and thus word learning is explored. Methods: Nineteen adults with dyslexia and 18 adult controls participated in a classic auditory oddball electroencephalographic experiment here referred to as DIFF, to indicate that the tones differed in frequency, while incorporating a decision-making task that signified participant tonal discrimination. Mismatch Negativity (MMN) amplitudes (AMPs) and latencies were collected from ERPs. Behavioral data consisting of reaction time (RT) and accuracy (ACC) of tone choice were documented. Results: Group differences for accuracy and reaction time in the DIFF task were highly significant. The dyslexic group produced longer reaction times and with less accuracy than the control group. The Mismatch Negativity amplitude and latency collected did not differ significantly between groups, however, correlations to other variables obtained from similar studies consisting of the same participant group were observed. Linear regression models indicated predictions for accuracy and reaction time results based upon WID scores (Word Identification Test) and SWE scores (Sight Word Efficiency) respectfully. Conclusions: Neural processing speed and the ability to form permanent memory representations of auditory sound bites for retrieval is dampened in dyslexic populations. Significance: To better illuminate and understand the neural mechanisms of dyslexia, specifically auditory processing, with the goal of improving outcomes in individuals with dyslexia through more efficient therapy treatment options.
ContributorsAbrams, Gabrielle Renee (Author) / Peter, Beate (Thesis advisor) / Rogalsky, Corianne (Committee member) / Rao, Aparna (Committee member) / Arizona State University (Publisher)
Created2022
171661-Thumbnail Image.png
Description
Speech and music are traditionally thought to be primarily supported by different hemispheres. A growing body of evidence suggests that speech and music often rely on shared resources in bilateral brain networks, though the right and left hemispheres exhibit some domain-specific specialization. While there is ample research investigating speech deficits

Speech and music are traditionally thought to be primarily supported by different hemispheres. A growing body of evidence suggests that speech and music often rely on shared resources in bilateral brain networks, though the right and left hemispheres exhibit some domain-specific specialization. While there is ample research investigating speech deficits in individuals with right hemisphere lesions and amusia, fewer investigate amusia in individuals with left hemisphere lesions and aphasia. Many of the fronto-temporal-parietal regions in the left hemisphere commonly associated with speech processing and production are also implicated in bilateral music processing networks. The current study investigates the relationship between damage to specific regions of interest within these networks, and an individual’s ability to successfully match the pitch and rhythm of a presented melody. Twenty-seven participants with chronic-stroke lesions were given a melody repetition task to hum short novel piano melodies. Participants underwent structural MRI acquisition and were administered an extensive speech and cognitive battery. Pitch and rhythm scores were calculated by correlating participant responses and target piano notes. Production errors were calculated by counting trials with responses that don’t match the target melody’s note count. Overall, performance varied widely, and rhythm scores were significantly correlated. Working memory scores were significantly correlated with rhythm scores and production errors, but not pitch scores. Broca’s area lesions were not associated with significant differences in any of the melody repetition measures, while left Heschl’s gyrus lesions were associated with worse performance on pitch, rhythm, and production errors. Lower rhythm scores were associated with lesions including both the left anterior and posterior superior temporal gyrus, and in participants with damage to the left planum temporale. The other regions of interest were not consistently associated with poorer pitch scores or production errors. Although the present study does have limitations, the current study suggests lesions to left hemisphere regions thought to only affect speech also affect musical pitch and rhythm processing. Therefore, amusia should not be characterized solely as a right hemisphere disorder. Instead, musical abilities of individuals with left hemisphere stroke and aphasia should be characterized to better understand their deficits and mechanisms of impairment.
ContributorsWojtaszek, Mallory (Author) / Rogalsky, Corianne (Thesis advisor) / Daliri, Ayoub (Committee member) / Patten, Kristopher (Committee member) / Arizona State University (Publisher)
Created2022