Matching Items (4)

152609-Thumbnail Image.png

Quantifying the temporal and spatial response of channel steepness to changes in rift basin architecture

Description

Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are

Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are often characterized by strong climatic gradients that can be used to examine feedbacks between climate and tectonics. In this thesis, I quantify the spatial and temporal history of rift flank uplift by analyzing bedrock river channel profiles along footwall escarpments in the Malawi segment of the East Africa Rift. This work addresses questions that are widely applicable to continental rift settings: (1) Is rift-flank uplift sufficiently described by theoretical elliptical along-fault displacement patterns? (2) Do orographic climate patterns induced by rift topography affect rift-flank uplift or morphology? (3) How do uplift patterns along rift flanks vary over geologic timescales? In Malawi, 100-km-long border faults of alternating polarity bound half-graben sedimentary basins containing up to 4km of basin fill and water depths up to 700m. Orographically driven precipitation produces climatic gradients along footwall escarpments resulting in mean annual rainfall that varies spatially from 800 to 2500 mm. Temporal oscillations in climate have also resulted in lake lowstands 500 m below the modern shoreline. I examine bedrock river profiles crossing the Livingstone and Usisya Border Faults in northern Malawi using the channel steepness index (Ksn) to assess importance of these conditions on rift flank evolution. River profiles reveal a consistent transient pattern that likely preserves a temporal record of slip and erosion along the entire border fault system. These profiles and other topographic observations, along with known modern and paleoenvironmental conditions, can be used to interpret a complete history of rift flank development from the onset of rifting to present. I interpret the morphology of the upland landscape to preserve the onset of extensional faulting across a relict erosion surface. The linkages of individual faults and acceleration of slip during the development of a continuous border fault is suggested by an analysis of knickpoint elevations and Ksn. Finally, these results suggest that the modern observed climate gradient only began to significantly affect denudation patterns once a high relief rift flank was established.

Contributors

Agent

Created

Date Created
  • 2014

155177-Thumbnail Image.png

Combining tectonic geomorphology and paleoseismology for understanding of earthquake recurrence

Description

There is a need to understand spatio-temporal variation of slip in active fault zones, both for the advancement of physics-based earthquake simulation and for improved probabilistic seismic hazard assessments. One

There is a need to understand spatio-temporal variation of slip in active fault zones, both for the advancement of physics-based earthquake simulation and for improved probabilistic seismic hazard assessments. One challenge in the study of seismic hazards is producing a viable earthquake rupture forecast—a model that specifies the expected frequency and magnitude of events for a fault system. Time-independent earthquake forecasts can produce a mismatch among observed earthquake recurrence intervals, slip-per-event estimates, and implied slip rates. In this thesis, I developed an approach to refine several key geologic inputs to rupture forecasts by focusing on the San Andreas Fault in the Carrizo Plain, California. I use topographic forms, sub-surface excavations, and high-precision geochronology to understand the generation and preservation of slip markers at several spatial and temporal scales—from offset in a single earthquake to offset accumulated over thousands of years. This work results in a comparison of slip rate estimates in the Carrizo Plain for the last ~15 kyr that reduces ambiguity and enriches rupture forecast parameters. I analyzed a catalog of slip measurements and surveyed earth scientists with varying amounts of experience to validate high-resolution topography as a supplement to field-based active fault studies. The investigation revealed that (for both field and remote studies) epistemic uncertainties associated with measuring offset landforms can present greater limitations than the aleatoric limitations of the measurement process itself. I pursued the age and origin of small-scale fault-offset fluvial features at Van Matre Ranch, where topographic depressions were previously interpreted as single-event tectonic offsets. I provide new estimates of slip in the most recent earthquake, refine the centennial-scale fault slip rate, and formulate a new understanding of the formation of small-scale fault-offset fluvial channels from small catchments (<7,000 m2). At Phelan Creeks, I confirm the constancy of strain release for the ~15,000 years in the Carrizo Plain by reconstructing a multistage offset landform evolutionary history. I update and explicate a simplified model to interpret the geomorphic response of stream channels to strike-slip faulting. Lastly, I re-excavate and re-interpret paleoseismic catalogs along an intra-continental strike-slip fault (Altyn Tagh, China) to assess consistency of earthquake recurrence.

Contributors

Agent

Created

Date Created
  • 2016

150188-Thumbnail Image.png

Integrating LiDAR topography into the study of earthquakes and faulting

Description

Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake

Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it is appropriate to integrate these data into Earth science educational materials. I seek to answer the following research question: "will using the LiDAR topography data instead of, or alongside, traditional visualizations and teaching methods enhance a student's ability to understand geologic concepts such as plate tectonics, the earthquake cycle, strike-slip faults, and geomorphology?" In order to answer this question, a ten-minute introductory video on LiDAR and its uses for the study of earthquakes entitled "LiDAR: Illuminating Earthquake Hazards" was produced. Additionally, LiDAR topography was integrated into the development of an undergraduate-level educational activity, the San Andreas fault (SAF) earthquake cycle activity, designed to teach introductory Earth science students about the earthquake cycle. Both the LiDAR video and the SAF activity were tested in undergraduate classrooms in order to determine their effectiveness. A pretest and posttest were administered to introductory geology lab students. The results of these tests show a notable increase in understanding LiDAR topography and its uses for studying earthquakes from pretest to posttest after watching the video on LiDAR, and a notable increase in understanding the earthquake cycle from pretest to posttest using the San Andreas Fault earthquake cycle exercise. These results suggest that the use of LiDAR topography within these educational tools is beneficial for students when learning about the earthquake cycle and earthquake hazards.

Contributors

Agent

Created

Date Created
  • 2011

149799-Thumbnail Image.png

Explicit teaching of the nature of science: a study of the impact of two variations of explicit instruction on student learning

Description

The nature of science (NOS) is included in the National Science Education Standards and is described as a critical component in the development of scientifically literate students. Despite the significance

The nature of science (NOS) is included in the National Science Education Standards and is described as a critical component in the development of scientifically literate students. Despite the significance of NOS in science education reform, research shows that many students continue to possess naïve views of NOS. Explicit and reflective discussion as an instructional approach is relatively new in the field of research in NOS. When compared to other approaches, explicit instruction has been identified as more effective in promoting informed views of NOS, but gaps in student understanding still exist. The purpose of this study was to deepen the understanding of student learning of NOS through the investigation of two variations of explicit instruction. The subjects of the study were two seventh grade classes taught by the same classroom teacher. One class received explicit instruction of NOS within a plate tectonics unit and the second class received explicit instruction of NOS within a plate tectonics unit plus supporting activities focused on specific aspects of NOS. The instruction time for both classes was equalized and took place over a three week time period. The intention of this study was to see if the additional NOS activities helped students build a deeper understanding of NOS, or if a deep understanding could be formed solely through explicit and reflective discussion within content instruction. The results of the study showed that both classes progressed in their understanding of NOS. When the results of the two groups were compared, the group with the additional activities showed statistically significant gains on two of the four aspects of NOS assessed. These results suggest that the activities may have been valuable in promoting informed views, but more research is needed in this area.

Contributors

Agent

Created

Date Created
  • 2011