Matching Items (3)
Filtering by

Clear all filters

149792-Thumbnail Image.png
Description
Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are studied via a variety of methods. The first microelectronic devices

Ge1-ySny alloys represent a new class of photonic materials for integrated optoelectronics on Si. In this work, the electrical and optical properties of Ge1-ySny alloy films grown on Si, with concentrations in the range 0 ≤ y ≤ 0.04, are studied via a variety of methods. The first microelectronic devices from GeSn films were fabricated using newly developed CMOS-compatible protocols, and the devices were characterized with respect to their electrical properties and optical response. The detectors were found to have a detection range that extends into the near-IR, and the detection edge is found to shift to longer wavelengths with increasing Sn content, mainly due to the compositional dependence of the direct band gap E0. With only 2 % Sn, all of the telecommunication bands are covered by a single detector. Room temperature photoluminescence was observed from GeSn films with Sn content up to 4 %. The peak wavelength of the emission was found to shift to lower energies with increasing Sn content, corresponding to the decrease in the direct band gap E0 of the material. An additional peak in the spectrum was assigned to the indirect band gap. The separation between the direct and indirect peaks was found to decrease with increasing Sn concentration, as expected. Electroluminescence was also observed from Ge/Si and Ge0.98Sn0.02 photodiodes under forward bias, and the luminescence spectra were found to match well with the observed photoluminescence spectra. A theoretical expression was developed for the luminescence due to the direct band gap and fit to the data.
ContributorsMathews, Jay (Author) / Menéndez, Jose (Thesis advisor) / Kouvetakis, John (Thesis advisor) / Drucker, Jeffery (Committee member) / Chizmeshya, Andrew (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2011
156807-Thumbnail Image.png
Description
The work described in this thesis explores the synthesis of new semiconductors in the Si-Ge-Sn system for application in Si-photonics. Direct gap Ge1-ySny (y=0.12-0.16) alloys with enhanced light emission and absorption are pursued. Monocrystalline layers are grown on Si platforms via epitaxy-driven reactions between Sn- and Ge-hydrides using compositionally graded

The work described in this thesis explores the synthesis of new semiconductors in the Si-Ge-Sn system for application in Si-photonics. Direct gap Ge1-ySny (y=0.12-0.16) alloys with enhanced light emission and absorption are pursued. Monocrystalline layers are grown on Si platforms via epitaxy-driven reactions between Sn- and Ge-hydrides using compositionally graded buffer layers that mitigate lattice mismatch between the epilayer and Si platforms. Prototype p-i-n structures are fabricated and are found to exhibit direct gap electroluminescence and tunable absorption edges between 2200 and 2700 nm indicating applications in LEDs and detectors. Additionally, a low pressure technique is described producing pseudomorphic Ge1-ySny alloys in the compositional range y=0.06-0.17. Synthesis of these materials is achieved at ultra-low temperatures resulting in nearly defect-free films that far exceed the critical thicknesses predicted by thermodynamic considerations, and provide a chemically driven route toward materials with properties typically associated with molecular beam epitaxy.

Silicon incorporation into Ge1-ySny yields a new class of Ge1-x-ySixSny (y>x) ternary alloys using reactions between Ge3H8, Si4H10, and SnD4. These materials contain small amounts of Si (x=0.05-0.08) and Sn contents of y=0.1-0.15. Photoluminescence studies indicate an intensity enhancement relative to materials with lower Sn contents (y=0.05-0.09). These materials may serve as thermally robust alternatives to Ge1-ySny for mid-infrared (IR) optoelectronic applications.

An extension of the above work is the discovery of a new class of Ge-like Group III-V-IV hybrids with compositions Ga(As1–xPx)Ge3 (x=0.01-0.90) and (GaP)yGe5–2y related to Ge1-x-ySixSny in structure and properties. These materials are prepared by chemical vapor deposition of reactive Ga-hydrides with P(GeH3)3 and As(GeH3)3 custom precursors as the sources of P, As, and Ge incorporating isolated GaAs and GaP donor-acceptor pairs into diamond-like Ge-based structures. Photoluminescence studies reveal bandgaps in the near-IR and large bowing of the optical behavior relative to linear interpolation of the III-V and Ge end members. Similar materials in the Al-Sb-B-P system are also prepared and characterized. The common theme of the above topics is the design and fabrication of new optoelectronic materials that can be fully compatible with Si-based technologies for expanding the optoelectronic capabilities of Ge into the mid-IR and beyond through compositional tuning of the diamond lattice.
ContributorsWallace, Patrick Michael (Author) / Kouvetakis, John (Thesis advisor) / Menéndez, Jose (Committee member) / Trovitch, Ryan (Committee member) / Arizona State University (Publisher)
Created2018
156931-Thumbnail Image.png
Description
The search for highly active, inexpensive, and earth abundant replacements for existing transition metal catalysts is ongoing. Our group has utilized several redox non-innocent ligands that feature flexible arms with donor substituents. These ligands allow for coordinative flexibility about the metal centre, while the redox non-innocent core helps to overcome

The search for highly active, inexpensive, and earth abundant replacements for existing transition metal catalysts is ongoing. Our group has utilized several redox non-innocent ligands that feature flexible arms with donor substituents. These ligands allow for coordinative flexibility about the metal centre, while the redox non-innocent core helps to overcome the one electron chemistry that is prevalent in first row transition metals. This dissertation focuses on the use of Ph2PPrDI, which can adopt a κ4-configuration when bound to a metal. One reaction that is industrially useful is hydrosilylation, which allows for the preparation of silicones that are useful in the lubrication, adhesive, and cosmetics industries. Typically, this reaction relies on highly active, platinum-based catalysts. However, the high cost of this metal has inspired the search for base metal replacements. In Chapter One, an overview of existing alkene and carbonyl hydrosilylation catalysts is presented. Chapter Two focuses on exploring the reactivity of (Ph2PPrDI)Ni towards carbonyl hydrosilylation, as well as the development of the 2nd generation catalysts, (iPr2PPrDI)Ni and (tBu2PPrDI)Ni. Chapter Three presents a new C-O bond hydrosilylation reaction for the formation of silyl esters. It was found the (Ph2PPrDI)Ni is the most active catalyst in the literature for this transformation, with turnover frequencies of up to 900 h-1. Chapter Four explores the activity and selectivity of (Ph2PPrDI)Ni for alkene hydrosilylation, including the first large scope of gem-olefins for a nickel-based catalyst. Chapter Five explores the chemistry of (Ph2PPrDI)CoH, first through electronic structure determinations and crystallography, followed by an investigation of its reactivity towards alkyne hydroboration and nitrile dihydroboration. (Ph2PPrDI)CoH is the first reported cobalt nitrile dihydroboration catalyst.
ContributorsRock, Christopher L (Author) / Trovitch, Ryan J (Thesis advisor) / Kouvetakis, John (Committee member) / Pettit, George R. (Committee member) / Arizona State University (Publisher)
Created2018