Matching Items (2)

149788-Thumbnail Image.png

A New RNS 4-moduli set for the implementation of FIR filters

Description

Residue number systems have gained significant importance in the field of high-speed digital signal processing due to their carry-free nature and speed-up provided by parallelism. The critical aspect in the

Residue number systems have gained significant importance in the field of high-speed digital signal processing due to their carry-free nature and speed-up provided by parallelism. The critical aspect in the application of RNS is the selection of the moduli set and the design of the conversion units. There have been several RNS moduli sets proposed for the implementation of digital filters. However, some are unbalanced and some do not provide the required dynamic range. This thesis addresses the drawbacks of existing RNS moduli sets and proposes a new moduli set for efficient implementation of FIR filters. An efficient VLSI implementation model has been derived for the design of a reverse converter from RNS to the conventional two's complement representation. This model facilitates the realization of a reverse converter for better performance with less hardware complexity when compared with the reverse converter designs of the existing balanced 4-moduli sets. Experimental results comparing multiply and accumulate units using RNS that are implemented using the proposed four-moduli set with the state-of-the-art balanced four-moduli sets, show large improvements in area (46%) and power (43%) reduction for various dynamic ranges. RNS FIR filters using the proposed moduli-set and existing balanced 4-moduli set are implemented in RTL and compared for chip area and power and observed 20% improvements. This thesis also presents threshold logic implementation of the reverse converter.

Contributors

Agent

Created

Date Created
  • 2011

151382-Thumbnail Image.png

Adaptive filter bank time-frequency representations

Description

A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar

A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its application in Fourier optics: it is shown that the WD is analogous to the spectral dispersion that results from a diffraction grating, and time and frequency are similarly analogous to a one dimensional spatial coordinate and wavenumber. The grating is compared with a simple polychromator, which is a bank of optical filters. Another well-known TFR is the short time Fourier transform (STFT). Its discrete version can be shown to be equivalent to a filter bank, an array of bandpass filters that enable localized processing of the analysis signals in different sub-bands. This work proposes a signal-adaptive method of generating TFRs. In order to minimize distortion in analyzing a signal, the method modifies the filter bank to consist of non-overlapping rectangular bandpass filters generated using the Butterworth filter design process. The information contained in the resulting TFR can be used to reconstruct the signal, and perfect reconstruction techniques involving quadrature mirror filter banks are compared with a simple Fourier synthesis sum. The optimal filter parameters of the rectangular filters are selected adaptively by minimizing the mean-squared error (MSE) from a pseudo-reconstructed version of the analysis signal. The reconstruction MSE is proposed as an error metric for characterizing TFRs; a practical measure of the error requires normalization and cross correlation with the analysis signal. Simulations were performed to demonstrate the the effectiveness of the new adaptive TFR and its relation to swept-tuned spectrum analyzers.

Contributors

Agent

Created

Date Created
  • 2012