Matching Items (3)
Filtering by

Clear all filters

150773-Thumbnail Image.png
Description
Photovoltaics (PV) is an important and rapidly growing area of research. With the advent of power system monitoring and communication technology collectively known as the "smart grid," an opportunity exists to apply signal processing techniques to monitoring and control of PV arrays. In this paper a monitoring system which provides

Photovoltaics (PV) is an important and rapidly growing area of research. With the advent of power system monitoring and communication technology collectively known as the "smart grid," an opportunity exists to apply signal processing techniques to monitoring and control of PV arrays. In this paper a monitoring system which provides real-time measurements of each PV module's voltage and current is considered. A fault detection algorithm formulated as a clustering problem and addressed using the robust minimum covariance determinant (MCD) estimator is described; its performance on simulated instances of arc and ground faults is evaluated. The algorithm is found to perform well on many types of faults commonly occurring in PV arrays. Among several types of detection algorithms considered, only the MCD shows high performance on both types of faults.
ContributorsBraun, Henry (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2012
152122-Thumbnail Image.png
Description
Video denoising has been an important task in many multimedia and computer vision applications. Recent developments in the matrix completion theory and emergence of new numerical methods which can efficiently solve the matrix completion problem have paved the way for exploration of new techniques for some classical image processing tasks.

Video denoising has been an important task in many multimedia and computer vision applications. Recent developments in the matrix completion theory and emergence of new numerical methods which can efficiently solve the matrix completion problem have paved the way for exploration of new techniques for some classical image processing tasks. Recent literature shows that many computer vision and image processing problems can be solved by using the matrix completion theory. This thesis explores the application of matrix completion in video denoising. A state-of-the-art video denoising algorithm in which the denoising task is modeled as a matrix completion problem is chosen for detailed study. The contribution of this thesis lies in both providing extensive analysis to bridge the gap in existing literature on matrix completion frame work for video denoising and also in proposing some novel techniques to improve the performance of the chosen denoising algorithm. The chosen algorithm is implemented for thorough analysis. Experiments and discussions are presented to enable better understanding of the problem. Instability shown by the algorithm at some parameter values in a particular case of low levels of pure Gaussian noise is identified. Artifacts introduced in such cases are analyzed. A novel way of grouping structurally-relevant patches is proposed to improve the algorithm. Experiments show that this technique is useful, especially in videos containing high amounts of motion. Based on the observation that matrix completion is not suitable for denoising patches containing relatively low amount of image details, a framework is designed to separate patches corresponding to low structured regions from a noisy image. Experiments are conducted by not subjecting such patches to matrix completion, instead denoising such patches in a different way. The resulting improvement in performance suggests that denoising low structured patches does not require a complex method like matrix completion and in fact it is counter-productive to subject such patches to matrix completion. These results also indicate the inherent limitation of matrix completion to deal with cases in which noise dominates the structural properties of an image. A novel method for introducing priorities to the ranked patches in matrix completion is also presented. Results showed that this method yields improved performance in general. It is observed that the artifacts in presence of low levels of pure Gaussian noise appear differently after introducing priorities to the patches and the artifacts occur at a wider range of parameter values. Results and discussion suggesting future ways to explore this problem are also presented.
ContributorsMaguluri, Hima Bindu (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Claveau, Claude (Committee member) / Arizona State University (Publisher)
Created2013
152367-Thumbnail Image.png
Description
Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing

Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing (DSP) applications. Most of the current efforts in DSP education focus on building tools to facilitate understanding of the mathematical principles. However, there is a disconnect between real-world data processing problems and the material presented in a DSP course. Sophisticated mobile interfaces and apps can potentially play a crucial role in providing a hands-on-experience with modern DSP applications to students. In this work, a new paradigm of DSP learning is explored by building an interactive easy-to-use health monitoring application for use in DSP courses. This is motivated by the increasing commercial interest in employing mobile phones for real-time health monitoring tasks. The idea is to exploit the computational abilities of the Android platform to build m-Health modules with sensor interfaces. In particular, appropriate sensing modalities have been identified, and a suite of software functionalities have been developed. Within the existing framework of the AJDSP app, a graphical programming environment, interfaces to on-board and external sensor hardware have also been developed to acquire and process physiological data. The set of sensor signals that can be monitored include electrocardiogram (ECG), photoplethysmogram (PPG), accelerometer signal, and galvanic skin response (GSR). The proposed m-Health modules can be used to estimate parameters such as heart rate, oxygen saturation, step count, and heart rate variability. A set of laboratory exercises have been designed to demonstrate the use of these modules in DSP courses. The app was evaluated through several workshops involving graduate and undergraduate students in signal processing majors at Arizona State University. The usefulness of the software modules in enhancing student understanding of signals, sensors and DSP systems were analyzed. Student opinions about the app and the proposed m-health modules evidenced the merits of integrating tools for mobile sensing and processing in a DSP curriculum, and familiarizing students with challenges in modern data-driven applications.
ContributorsRajan, Deepta (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013