Matching Items (5)
Filtering by

Clear all filters

150664-Thumbnail Image.png
Description
Population growth and fresh water depletion challenge drinking water utilities. Surface water quality is impacted significantly by climate variability, human activities, and extreme events like natural disasters. Dissolved organic carbon (DOC) is an important water quality index and the precursor of disinfection by-products (DBPs) that varies with both hydrologic and

Population growth and fresh water depletion challenge drinking water utilities. Surface water quality is impacted significantly by climate variability, human activities, and extreme events like natural disasters. Dissolved organic carbon (DOC) is an important water quality index and the precursor of disinfection by-products (DBPs) that varies with both hydrologic and anthropogenic factors. Granular activated carbon (GAC) is a best available technology for utilities to meet Stage 2 D/DBP rule compliance and to remove contaminants of emerging concern (CECs) (e.g., pharmaceutical, personal care products (PCPs), etc.). Utilities can operate GAC with more efficient and flexible strategies with the understanding of organic occurrence in source water and a model capable predicting DOC occurrence. In this dissertation, it was found that DOC loading significantly correlated with spring runoff and was intensified by dry-duration antecedent to first flush. Dynamic modeling based on reservoir management (e.g., pump-back operation) was established to simulate the DOC transport in the reservoir system. Additionally, summer water recreational activities were found to raise the level of PCPs, especially skin-applied products, in raw waters. GAC was examined in this dissertation for both carbonaceous and emerging nitrogenous DBP (N-DBP) precursors (i.e., dissolved organic nitrogen (DON)) removal. Based on the experimental findings, GAC preferentially removes UV254-absorbing material, and DOC is preferentially removed over DON which may be composed primarily of hydrophilic organic and results in the low affinity for adsorption by GAC. The presence of organic nitrogen can elevate the toxicity of DBPs by forming N-DBPs, and this could be a major drawback for facilities considering installation of a GAC adsorber owing to the poor removal efficiency of DON by GAC. A modeling approach was established for predicting DOC and DON breakthrough during GAC operation. However, installation of GAC adsorber is a burden for utilities with respect to operational and maintenance cost. It is common for utilities to regenerate saturated GAC in order to save the cost of purchasing fresh GAC. The traditional thermal regeneration technology for saturated GAC is an energy intensive process requiring high temperature of incineration. Additionally, small water treatment sites usually ship saturated GAC to specialized facilities for regeneration increasing the already significant carbon footprint of thermal regeneration. An innovative GAC regeneration technique was investigated in this dissertation for the feasibility as on-site water treatment process. Virgin GAC was first saturated by organic contaminant then regenerated in-situ by iron oxide nanocatalysts mixed with hydrogen peroxide. At least 70 % of adsorption capacity of GAC can be regenerated repeatedly for experiments using modeling compound (phenol) or natural organic matter (Suwannee River humic acid). The regeneration efficiency increases with increasing adsorbate concentration. Used-iron nanocatalysts can be recovered repeatedly without significant loss of catalytic ability. This in-situ regeneration technique provides cost and energy efficient solution for water utilities considering GAC installation. Overall, patterns were found for DOC and CEC variations in drinking water sources. Increasing concentrations of bulk (DOC and DON) and/or trace organics challenge GAC operation in utilities that have limited numbers of bed-volume treated before regeneration is required. In-situ regeneration using iron nanocatalysts and hydrogen peroxide provides utilities an alternative energy-efficient operation mode when considering installation of GAC adsorber.
ContributorsChiu, Chao-An (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2012
156007-Thumbnail Image.png
Description
Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency

Granular activated carbon (GAC) is effectively used to remove natural organic matter (NOM) and to assist in the removal of disinfection byproducts (DBPs) and their precursors. However, operation of GAC is cost- and labor-intensive due to frequent media replacement. Optimizing the use of GAC is necessary to ensure treatment efficiency while reducing costs. This dissertation presents four strategies to reduce improve GAC usage while reducing formation of DBPs. The first part of this work adopts Rapid Small Scale Tests (RSSCTs) to evaluate removal of molecular weight fractions of NOM, characterized using size exclusion chromatography (SECDOC). Total trihalomethanes (TTHM), haloacetic acids (HAA5) and haloacetonitriles (HAN) formation were quantified after treatment with GAC. Low MW NOM was removed preferentially in the early bed volumes, up until exhaustion of available adsorption sites. DBP formation potential lowered with DOC removal. Chlorination prior to GAC is investigated in the second part of this work as a strategy to increase removal of NOM and DBP precursors. Results showed lower TTHM formation in the effluent of the GAC treatment when pre-chlorination was adopted, meaning this strategy could help optimize and extend the bed life if GAC filters. The third part of this work investigates in-situ GAC regeneration as an alternative to recover adsorption capacity of field-spent GAC that could potentially offer new modes of operation for water treatment facilities while savng costs with reactivation of spent GAC in an external facility. Field-spent GACs were treated with different oxidant solutions and recovery in adsorption capacity was evaluated for NOM and for two micro pollutants. Recovery of GAC adsorption capacity was not satisfactory for most of conditions evaluated. This indicates that in-situ GAC regeneration could be more effective when the adsorbates are present at high concentrations. Lastly, this work investigates the impact of low molecular weight polyDADMAC on N-nitrosodimethylamine (NDMA) formation. Water treatment facilities rely on polyDADMAC as a coagulant aid to comply with NOM removal and turbidity requirements. Since polymer-derived NDMA precursors are not removed by GAC, it is essential to optimize the use and synthesis of polyDADMAC to reduce NDMA precursors during water treatment.
ContributorsFischer, Natalia (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2017
156405-Thumbnail Image.png
Description
Specific inorganic and organic pollutants in water (As(V), Cr(VI), THMs, and hardness) cause health concerns or aesthetic problems. The goal of this dissertation is to demonstrate novel approaches to improve the performance of point of use and municipal activated carbon processes to provide safe and reliable water to the public

Specific inorganic and organic pollutants in water (As(V), Cr(VI), THMs, and hardness) cause health concerns or aesthetic problems. The goal of this dissertation is to demonstrate novel approaches to improve the performance of point of use and municipal activated carbon processes to provide safe and reliable water to the public at distributed centralized locations.

Template Assisted Crystallization system would adjust saturation index (SI) value of TAC treated water to zero when SI value of influent water was in the range at 0.08~0.3. However, the reduction in SI when SI values were higher (e.g. 0.7~1.3) was similar to the reduction at lower SI values which could be due to limitations in kinetics or mass transfer with the template on TAC media.

Pre-chlorination prior to municipal-scale granular activated carbon (GAC) treatment was evaluated to control THM formation in distribution systems. Pre-chlorination decreased UVA, shift the dissolved organic carbon (DOC) molecular weight distribution and pre-formed trihalomethanes (THM). GAC treatment of pre-chlorinated water achieved lower THM formation in distribution systems.

To add functionality in POU systems to remove As(V) and Cr(VI), activated carbon was nano-tized to fabricate nano-enabled carbon block (CB) by (1) impregnating iron or titanium metal oxides chemically or (2) attaching titanium based P25 through electrostatic attraction force. Nanoparticle loadings of 5 to 10 wt % with respect to activated carbon enables reduction of As(V) or Cr(VI) from levels of common occurrence to below regulatory levels across carbon block designs. Minimal impacts on As(V) and Cr(VI) sorption were observed up to a nanoparticle pre-treatment temperature of 200 C, which is the temperature for CB production. Through controlling pH at 4.5 during mixing of nanoparticles with pH IEP=6 and activated carbon with pH IEP=3, electrostatic attachment of nanoparticles to activated carbon could be achieved prior to fabricating carbon block. A mini carbon block test device was designed, fabricated, and validated to mimic performances of full-scale carbon block using less volumes of test water. As(V) removal tests showed Fe impregnated CB achieved the highest As(V) removal while P25 attached CB had the lowest among three nanoparticles loaded CBs.
ContributorsLee, Heuidae (Author) / Westerhoff, Paul (Thesis advisor) / Fox, Peter (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2018
155866-Thumbnail Image.png
Description
Activated Carbon has been used for decades to remove organics from water at large scale in municipal water treatment as well as at small scale in Point of Use (POU) and Point of Entry (POE) water treatment. This study focused on Granular Activated Carbon (GAC) and also activated Carbon Block

Activated Carbon has been used for decades to remove organics from water at large scale in municipal water treatment as well as at small scale in Point of Use (POU) and Point of Entry (POE) water treatment. This study focused on Granular Activated Carbon (GAC) and also activated Carbon Block (CB) were studied.

This thesis has three related elements for organics control in drinking water. First, coagulation chemistry for Alum and Aluminum Chlorohydrate (ACH) was optimized for significant organics removal to address membrane fouling issue at a local municipal water treatment plant in Arizona. Second, Rapid Small Scale Column Tests were conducted for removal of Perfluorinated compounds (PFC), PFC were present in groundwater at a local site in Arizona at trace levels with combined concentration of Perfluorooctaneoic Acid (PFOA) and Perfloorooctanesulfonic Acid (PFOS) up to 245 ng/L. Groundwater from the concerned site is used as drinking water source by a private utility. PFC Removal was evaluated for different GAC, influent concentrations and particle sizes. Third, a new testing protocol (Mini Carbon Block (MCB)) for bench scale study of POU water treatment device, specifically carbon block filter was developed and evaluated. The new bench scale decreased the hydraulic requirements by 60 times approximately, which increases the feasibility to test POU at a lab scale. It was evaluated for a common POU organic contaminant: Chloroform, and other model contaminants.

10 mg/L of ACH and 30 mg/L of Alum with pH adjustment were determined as optimal coagulant doses. Bituminous coal based GAC was almost three times better than coconut shell based GAC for removing PFC. Multiple tests with MCB suggested no short circuiting and consistent performance for methylene blue though chloroform removal tests underestimated full scale carbon block performance but all these tests creates a good theoretical and practical fundament for this new approach and provides directions for future researchers.
ContributorsAshani, Harsh Satishbhai (Author) / Westerhoff, Paul (Thesis advisor) / Hristovski, Kiril (Committee member) / Conroy-Ben, Otakuye (Committee member) / Arizona State University (Publisher)
Created2017
154023-Thumbnail Image.png
Description
N-nitrosodimethylamine (NDMA) is a probable human carcinogen and drinking water disinfection by-product. NDMA forms as the product of reactions between chloramines and precursor compounds in water. This dissertation aims to provide insight into the removal of NDMA precursors, their nature, and a method to aid in their identification. Watershed-derived precursors

N-nitrosodimethylamine (NDMA) is a probable human carcinogen and drinking water disinfection by-product. NDMA forms as the product of reactions between chloramines and precursor compounds in water. This dissertation aims to provide insight into the removal of NDMA precursors, their nature, and a method to aid in their identification. Watershed-derived precursors accounted for more of and greater variability to NDMA formation upon chloramination than polymer-derived precursors in environmental samples. Coagulation polymers are quaternary amines, which have low NDMA yield but high use rates. Watershed-derived precursors were removed up to 90% by sorption to activated carbon, but activated carbon exhibited much less (<10%) sorption of polymer-derived precursors. Combined with literature NDMA molar yields of model anthropogenic compounds, where anthropogenic chemicals in some cases have NDMA yields >90% and biological compounds always have yields <2%, trace, organic, amine containing, anthropogenic chemicals were implicated as the most likely source of NDMA precursors in the watershed. Although activated carbon removes these precursors well, identification of individual compounds may result in more cost effective mitigation strategies. Therefore, I developed a method to isolate NDMA precursors from other organic matter into methanol to facilitate their identification. Optimization of the method resulted in a median recovery of NDMA precursors of 82% from 10 surface waters and one wastewater. The method produces 1,000X concentrated NDMA precursors and, in collaboration with the University of Colorado Center for Environmental Mass Spectrometry, time of flight mass spectrometry (TOF-MS) was performed on multiple treated wastewater and raw drinking water isolates. During TOF-MS, tertiary amines can cleave to form a neutral loss and an R group ion that is dependent on the original structure and I wrote a software program to “trawl” exported TOF-MS spectra for the diagnostic neutral loss resulting from fragmentation of tertiary amines. Methadone was identified as one new NDMA precursor that occurs at concentrations that form physiologically relevant levels of NDMA in surface water and wastewater. The approach used here to identify NDMA precursors is adaptable to other unknown disinfection by-product precursors given that a functional group is known that can 1)control sorption and 2)produce a predictable diagnostic fragment.
ContributorsHanigan, David (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2015