Matching Items (6)

149695-Thumbnail Image.png

Materialized views over heterogeneous structured data sources in a distributed event stream processing environment

Description

Data-driven applications are becoming increasingly complex with support for processing events and data streams in a loosely-coupled distributed environment, providing integrated access to heterogeneous data sources such as relational databases and XML documents. This dissertation explores the use of materialized

Data-driven applications are becoming increasingly complex with support for processing events and data streams in a loosely-coupled distributed environment, providing integrated access to heterogeneous data sources such as relational databases and XML documents. This dissertation explores the use of materialized views over structured heterogeneous data sources to support multiple query optimization in a distributed event stream processing framework that supports such applications involving various query expressions for detecting events, monitoring conditions, handling data streams, and querying data. Materialized views store the results of the computed view so that subsequent access to the view retrieves the materialized results, avoiding the cost of recomputing the entire view from base data sources. Using a service-based metadata repository that provides metadata level access to the various language components in the system, a heuristics-based algorithm detects the common subexpressions from the queries represented in a mixed multigraph model over relational and structured XML data sources. These common subexpressions can be relational, XML or a hybrid join over the heterogeneous data sources. This research examines the challenges in the definition and materialization of views when the heterogeneous data sources are retained in their native format, instead of converting the data to a common model. LINQ serves as the materialized view definition language for creating the view definitions. An algorithm is introduced that uses LINQ to create a data structure for the persistence of these hybrid views. Any changes to base data sources used to materialize views are captured and mapped to a delta structure. The deltas are then streamed within the framework for use in the incremental update of the materialized view. Algorithms are presented that use the magic sets query optimization approach to both efficiently materialize the views and to propagate the relevant changes to the views for incremental maintenance. Using representative scenarios over structured heterogeneous data sources, an evaluation of the framework demonstrates an improvement in performance. Thus, defining the LINQ-based materialized views over heterogeneous structured data sources using the detected common subexpressions and incrementally maintaining the views by using magic sets enhances the efficiency of the distributed event stream processing environment.

Contributors

Agent

Created

Date Created
2011

151982-Thumbnail Image.png

Security and privacy in heterogeneous wireless and mobile networks: challenges and solutions

Description

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.

Contributors

Agent

Created

Date Created
2013

153085-Thumbnail Image.png

Simultaneous variable and feature group selection in heterogeneous learning: optimization and applications

Description

Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and

Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and learn interpretable models. Due to the multi-modality nature of heterogeneous data, it is interesting to design efficient machine learning models that are capable of performing variable selection and feature group (data source) selection simultaneously (a.k.a bi-level selection). In this thesis, I carry out research along this direction with a particular focus on designing efficient optimization algorithms. I start with a unified bi-level learning model that contains several existing feature selection models as special cases. Then the proposed model is further extended to tackle the block-wise missing data, one of the major challenges in the diagnosis of Alzheimer's Disease (AD). Moreover, I propose a novel interpretable sparse group feature selection model that greatly facilitates the procedure of parameter tuning and model selection. Last but not least, I show that by solving the sparse group hard thresholding problem directly, the sparse group feature selection model can be further improved in terms of both algorithmic complexity and efficiency. Promising results are demonstrated in the extensive evaluation on multiple real-world data sets.

Contributors

Agent

Created

Date Created
2014

152892-Thumbnail Image.png

Constrained energy optimization in heterogeneous platforms using generalized scaling models

Description

Mobile platforms are becoming highly heterogeneous by combining a powerful multiprocessor system-on-chip (MpSoC) with numerous resources including display, memory, power management IC (PMIC), battery and wireless modems into a compact package. Furthermore, the MpSoC itself is a heterogeneous resource that

Mobile platforms are becoming highly heterogeneous by combining a powerful multiprocessor system-on-chip (MpSoC) with numerous resources including display, memory, power management IC (PMIC), battery and wireless modems into a compact package. Furthermore, the MpSoC itself is a heterogeneous resource that integrates many processing elements such as CPU cores, GPU, video, image, and audio processors. As a result, optimization approaches targeting mobile computing needs to consider the platform at various levels of granularity.

Platform energy consumption and responsiveness are two major considerations for mobile systems since they determine the battery life and user satisfaction, respectively. In this work, the models for power consumption, response time, and energy consumption of heterogeneous mobile platforms are presented. Then, these models are used to optimize the energy consumption of baseline platforms under power, response time, and temperature constraints with and without introducing new resources. It is shown, the optimal design choices depend on dynamic power management algorithm, and adding new resources is more energy efficient than scaling existing resources alone. The framework is verified through actual experiments on Qualcomm Snapdragon 800 based tablet MDP/T. Furthermore, usage of the framework at both design and runtime optimization is also presented.

Contributors

Agent

Created

Date Created
2014

153401-Thumbnail Image.png

Predictive dynamic thermal and power management for heterogeneous mobile platforms

Description

Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a

Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there is a strong need for dynamic thermal and power management (DTPM) algorithms that can regulate temperature with minimal performance impact. This abstract presents a DTPM algorithm based on a practical temperature prediction methodology using system identification. The DTPM algorithm dynamically computes a power budget using the predicted temperature, and controls the types and number of active processors as well as their frequencies. Experiments on an octa-core big.LITTLE processor and common Android apps demonstrate that the proposed technique predicts temperature within 3% accuracy, while the DTPM algorithm provides around 6x reduction in temperature variance, and as large as 16% reduction in total platform power compared to using a fan.

Contributors

Agent

Created

Date Created
2015

153414-Thumbnail Image.png

Energy-efficient scheduling for heterogeneous servers in the dark silicon era

Description

Driven by stringent power and thermal constraints, heterogeneous multi-core processors, such as the ARM big-LITTLE architecture, are becoming increasingly popular. In this thesis, the use of low-power heterogeneous multi-cores as Microservers using web search as a motivational application is addressed.

Driven by stringent power and thermal constraints, heterogeneous multi-core processors, such as the ARM big-LITTLE architecture, are becoming increasingly popular. In this thesis, the use of low-power heterogeneous multi-cores as Microservers using web search as a motivational application is addressed. In particular, I propose a new family of scheduling policies for heterogeneous microservers that assign incoming search queries to available cores so as to optimize for performance metrics such as mean response time and service level agreements, while guaranteeing thermally-safe operation. Thorough experimental evaluations on a big-LITTLE platform demonstrate, on an heterogeneous eight-core Samsung Exynos 5422 MpSoC, with four big and little cores each, that naive performance oriented scheduling policies quickly result in thermal instability, while the proposed policies not only reduce peak temperature but also achieve 4.8x reduction in processing time and 5.6x increase in energy efficiency compared to baseline scheduling policies.

Contributors

Agent

Created

Date Created
2015