Matching Items (2)
Filtering by

Clear all filters

151460-Thumbnail Image.png
Description
This qualitative case study of 12, eighteen to twenty-four-year-olds from seven countries provided insight into the learning practices on an art-centered, social media platform. The study addressed two guiding questions; (a) what art related skills, knowledge, and dispositions do community members acquire using a social media platform? (b), What new

This qualitative case study of 12, eighteen to twenty-four-year-olds from seven countries provided insight into the learning practices on an art-centered, social media platform. The study addressed two guiding questions; (a) what art related skills, knowledge, and dispositions do community members acquire using a social media platform? (b), What new literacy practices, e.g., the use of new technologies and an ethos of participation, collective intelligence, collaboration, dispersion of abundant resources, and sharing (Knobel & Lankshear, 2007), do members use in acquiring of art-related skills, concepts, knowledge, and dispositions? Data included interviews, online documents, artwork, screen capture of online content, threaded online discussions, and a questionnaire. Drawing on theory and research from both new literacies and art education, the study identified five practices related to learning in the visual arts: (a) practicing as professional artists; (b) engaging in discovery based search strategies for viewing and collecting member produced content; (c) learning by observational strategies; (d) giving constructive criticism and feedback; (e) making learning resources. The study presents suggestions for teachers interested in empowering instruction with new social media technologies.
ContributorsJones, Brian (Author) / Stokrocki, Mary (Thesis advisor) / Young, Bernard (Committee member) / Guzzetti, Barbara (Committee member) / Arizona State University (Publisher)
Created2012
155180-Thumbnail Image.png
Description
The present study explored the use of augmented reality (AR) technology to support cognitive modeling in an art-based learning environment. The AR application used in this study made visible the thought processes and observational techniques of art experts for the learning benefit of novices through digital annotations, overlays, and side-by-side

The present study explored the use of augmented reality (AR) technology to support cognitive modeling in an art-based learning environment. The AR application used in this study made visible the thought processes and observational techniques of art experts for the learning benefit of novices through digital annotations, overlays, and side-by-side comparisons that when viewed on mobile device appear directly on works of art.

Using a 2 x 3 factorial design, this study compared learner outcomes and motivation across technologies (audio-only, video, AR) and groupings (individuals, dyads) with 182 undergraduate and graduate students who were self-identified art novices. Learner outcomes were measured by post-activity spoken responses to a painting reproduction with the pre-activity response as a moderating variable. Motivation was measured by the sum score of a reduced version of the Instructional Materials Motivational Survey (IMMS), accounting for attention, relevance, confidence, and satisfaction, with total time spent in learning activity as the moderating variable. Information on participant demographics, technology usage, and art experience was also collected.

Participants were randomly assigned to one of six conditions that differed by technology and grouping before completing a learning activity where they viewed four high-resolution, printed-to-scale painting reproductions in a gallery-like setting while listening to audio-recorded conversations of two experts discussing the actual paintings. All participants listened to expert conversations but the video and AR conditions received visual supports via mobile device.

Though no main effects were found for technology or groupings, findings did include statistically significant higher learner outcomes in the elements of design subscale (characteristics most represented by the visual supports of the AR application) than the audio-only conditions. When participants saw digital representations of line, shape, and color directly on the paintings, they were more likely to identify those same features in the post-activity painting. Seeing what the experts see, in a situated environment, resulted in evidence that participants began to view paintings in a manner similar to the experts. This is evidence of the value of the temporal and spatial contiguity afforded by AR in cognitive modeling learning environments.
ContributorsShapera, Daniel Michael (Author) / Atkinson, Robert K (Thesis advisor) / Nelson, Brian C (Committee member) / Erickson, Mary (Committee member) / Arizona State University (Publisher)
Created2016