Matching Items (4)
Filtering by

Clear all filters

150286-Thumbnail Image.png
Description

This doctoral dissertation research aims to develop a comprehensive definition of urban open spaces and to determine the extent of environmental, social and economic impacts of open spaces on cities and the people living there. The approach I take to define urban open space is to apply fuzzy set theory

This doctoral dissertation research aims to develop a comprehensive definition of urban open spaces and to determine the extent of environmental, social and economic impacts of open spaces on cities and the people living there. The approach I take to define urban open space is to apply fuzzy set theory to conceptualize the physical characteristics of open spaces. In addition, a 'W-green index' is developed to quantify the scope of greenness in urban open spaces. Finally, I characterize the environmental impact of open spaces' greenness on the surface temperature, explore the social benefits through observing recreation and relaxation, and identify the relationship between housing price and open space be creating a hedonic model on nearby housing to quantify the economic impact. Fuzzy open space mapping helps to investigate the landscape characteristics of existing-recognized open spaces as well as other areas that can serve as open spaces. Research findings indicated that two fuzzy open space values are effective to the variability in different land-use types and between arid and humid cities. W-Green index quantifies the greenness for various types of open spaces. Most parks in Tempe, Arizona are grass-dominant with higher W-Green index, while natural landscapes are shrub-dominant with lower index. W-Green index has the advantage to explain vegetation composition and structural characteristics in open spaces. The outputs of comprehensive analyses show that the different qualities and types of open spaces, including size, greenness, equipment (facility), and surrounding areas, have different patterns in the reduction of surface temperature and the number of physical activities. The variance in housing prices through the distance to park was, however, not clear in this research. This dissertation project provides better insight into how to describe, plan, and prioritize the functions and types of urban open spaces need for sustainable living. This project builds a comprehensive framework for analyzing urban open spaces in an arid city. This dissertation helps expand the view for urban environment and play a key role in establishing a strategy and finding decision-makings.

ContributorsKim, Won Kyung (Author) / Wentz, Elizabeth (Thesis advisor) / Myint, Soe W (Thesis advisor) / Brazel, Anthony (Committee member) / Guhathakurta, Subhrajit (Committee member) / Arizona State University (Publisher)
Created2011
149815-Thumbnail Image.png
Description
Slum development and growth is quite popular in developing countries. Many studies have been done on what social and economic factors are the drivers in establishment of informal settlements at a single cross-section of time, however limited work has been done in studying their spatial growth patterns over time. This

Slum development and growth is quite popular in developing countries. Many studies have been done on what social and economic factors are the drivers in establishment of informal settlements at a single cross-section of time, however limited work has been done in studying their spatial growth patterns over time. This study attempts to study a sample of 30 informal settlements that exist in the National Capital Territory of India over a period of 40 years and identify relationships between the spatial growth rates and relevant factors identified in previous socio-economic studies of slums using advanced statistical methods. One of the key contributions of this paper is indicating the usefulness of satellite imagery or remote sensing data in spatial-longitudinal studies. This research utilizes readily available LANDSAT images to recognize the decadal spatial growth from 1970 to 2000, and also in extension, calculate the BI (transformed NDVI) as a proxy for the intensity of development for the settlements. A series of regression models were run after processing the data, and the levels of significance were then studied and compared to see which relationships indicated the highest levels of significance. It was observed that the change in BI had a higher strength of relationships with the change in independent variables than the settlement area growth. Also, logarithmic and cubic models showed the highest R-Square values than any other tested models.
ContributorsPrakash, Mihir (Author) / Guhathakurta, Subhrajit (Thesis advisor) / Myint, Soe W. (Committee member) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2011
158850-Thumbnail Image.png
Description
Spatial regression is one of the central topics in spatial statistics. Based on the goals, interpretation or prediction, spatial regression models can be classified into two categories, linear mixed regression models and nonlinear regression models. This dissertation explored these models and their real world applications. New methods and models were

Spatial regression is one of the central topics in spatial statistics. Based on the goals, interpretation or prediction, spatial regression models can be classified into two categories, linear mixed regression models and nonlinear regression models. This dissertation explored these models and their real world applications. New methods and models were proposed to overcome the challenges in practice. There are three major parts in the dissertation.

In the first part, nonlinear regression models were embedded into a multistage workflow to predict the spatial abundance of reef fish species in the Gulf of Mexico. There were two challenges, zero-inflated data and out of sample prediction. The methods and models in the workflow could effectively handle the zero-inflated sampling data without strong assumptions. Three strategies were proposed to solve the out of sample prediction problem. The results and discussions showed that the nonlinear prediction had the advantages of high accuracy, low bias and well-performed in multi-resolution.

In the second part, a two-stage spatial regression model was proposed for analyzing soil carbon stock (SOC) data. In the first stage, there was a spatial linear mixed model that captured the linear and stationary effects. In the second stage, a generalized additive model was used to explain the nonlinear and nonstationary effects. The results illustrated that the two-stage model had good interpretability in understanding the effect of covariates, meanwhile, it kept high prediction accuracy which is competitive to the popular machine learning models, like, random forest, xgboost and support vector machine.

A new nonlinear regression model, Gaussian process BART (Bayesian additive regression tree), was proposed in the third part. Combining advantages in both BART and Gaussian process, the model could capture the nonlinear effects of both observed and latent covariates. To develop the model, first, the traditional BART was generalized to accommodate correlated errors. Then, the failure of likelihood based Markov chain Monte Carlo (MCMC) in parameter estimating was discussed. Based on the idea of analysis of variation, back comparing and tuning range, were proposed to tackle this failure. Finally, effectiveness of the new model was examined by experiments on both simulation and real data.
ContributorsLu, Xuetao (Author) / McCulloch, Robert (Thesis advisor) / Hahn, Paul (Committee member) / Lan, Shiwei (Committee member) / Zhou, Shuang (Committee member) / Saul, Steven (Committee member) / Arizona State University (Publisher)
Created2020
158516-Thumbnail Image.png
Description
Geographically Weighted Regression (GWR) has been broadly used in various fields to

model spatially non-stationary relationships. Classic GWR is considered as a single-scale model that is based on one bandwidth parameter which controls the amount of distance-decay in weighting neighboring data around each location. The single bandwidth in GWR assumes that

Geographically Weighted Regression (GWR) has been broadly used in various fields to

model spatially non-stationary relationships. Classic GWR is considered as a single-scale model that is based on one bandwidth parameter which controls the amount of distance-decay in weighting neighboring data around each location. The single bandwidth in GWR assumes that processes (relationships between the response variable and the predictor variables) all operate at the same scale. However, this posits a limitation in modeling potentially multi-scale processes which are more often seen in the real world. For example, the measured ambient temperature of a location is affected by the built environment, regional weather and global warming, all of which operate at different scales. A recent advancement to GWR termed Multiscale GWR (MGWR) removes the single bandwidth assumption and allows the bandwidths for each covariate to vary. This results in each parameter surface being allowed to have a different degree of spatial variation, reflecting variation across covariate-specific processes. In this way, MGWR has the capability to differentiate local, regional and global processes by using varying bandwidths for covariates. Additionally, bandwidths in MGWR become explicit indicators of the scale at various processes operate. The proposed dissertation covers three perspectives centering on MGWR: Computation; Inference; and Application. The first component focuses on addressing computational issues in MGWR to allow MGWR models to be calibrated more efficiently and to be applied on large datasets. The second component aims to statistically differentiate the spatial scales at which different processes operate by quantifying the uncertainty associated with each bandwidth obtained from MGWR. In the third component, an empirical study will be conducted to model the changing relationships between county-level socio-economic factors and voter preferences in the 2008-2016 United States presidential elections using MGWR.
ContributorsLi, Ziqi (Author) / Fotheringham, A. Stewart (Thesis advisor) / Goodchild, Michael F. (Committee member) / Li, Wenwen (Committee member) / Arizona State University (Publisher)
Created2020