Matching Items (2)
Filtering by

Clear all filters

156012-Thumbnail Image.png
Description
Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. The most commonly alleged causes of instability in CdTe device, such as “migration of Cu,” have been investigated

Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. The most commonly alleged causes of instability in CdTe device, such as “migration of Cu,” have been investigated rigorously over the past fifteen years. As all defects, intrinsic or extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and changing ionization state with excess free carriers. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging. The goal of the work in this dissertation is, thus, to eliminate the ambiguity between the observed performance changes under stress and their physical root cause by enabling a depth of modeling that takes account of diffusion and drift at the atomistic level coupled to the electronic subsystem responsible for a PV device’s function. The 1D Unified Solver, developed as part of this effort, enables us to analyze PV devices at a greater depth.

In this dissertation, the implementation of a drift-diffusion model defect migration simulator, development of an implicit reaction scheme for total mass conservation, and a couple of other numerical schemes to improve the overall flexibility and robustness of this coupled Unified Solver is discussed. Preliminary results on Cu (with or without Cl-treatment) annealing simulations in both single-crystal CdTe wafer and poly-crystalline CdTe devices show promising agreement to experimental findings, providing a new perspective in the research of improving doping concentration hence the open-circuit voltage of CdTe technology. Furthermore, on the reliability side, in agreement of previous experimental reports, simulation results suggest possibility of Cu depletion in short-circuited cells stressed at elevated temperature. The developed solver also successfully demonstrated that mobile donor migration can be used to explain solar cell performance changes under different stress conditions.
ContributorsGuo, Da (Author) / Vasileska, Dragica (Thesis advisor) / Sankin, Igor (Committee member) / Goodnick, Stephen (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2017
157838-Thumbnail Image.png
Description
Semiconductor devices often face reliability issues due to their operational con-

ditions causing performance degradation over time. One of the root causes of such

degradation is due to point defect dynamics and time dependent changes in their

chemical nature. Previously developed Unified Solver was successful in explaining

the copper (Cu) metastability issues in cadmium

Semiconductor devices often face reliability issues due to their operational con-

ditions causing performance degradation over time. One of the root causes of such

degradation is due to point defect dynamics and time dependent changes in their

chemical nature. Previously developed Unified Solver was successful in explaining

the copper (Cu) metastability issues in cadmium telluride (CdTe) solar cells. The

point defect formalism employed there could not be extended to chlorine or arsenic

due to numerical instabilities with the dopant chemical reactions. To overcome these

shortcomings, an advanced version of the Unified Solver called PVRD-FASP tool was

developed. This dissertation presents details about PVRD-FASP tool, the theoretical

framework for point defect chemical formalism, challenges faced with numerical al-

gorithms, improvements for the user interface, application and/or validation of the

tool with carefully chosen simulations, and open source availability of the tool for the

scientific community.

Treating point defects and charge carriers on an equal footing in the new formalism

allows to incorporate chemical reaction rate term as generation-recombination(G-R)

term in continuity equation. Due to the stiff differential equations involved, a reaction

solver based on forward Euler method with Newton step is proposed in this work.

The Jacobian required for Newton step is analytically calculated in an elegant way

improving speed, stability and accuracy of the tool. A novel non-linear correction

scheme is proposed and implemented to resolve charge conservation issue.

The proposed formalism is validated in 0-D with time evolution of free carriers

simulation and with doping limits of Cu in CdTe simulation. Excellent agreement of

light JV curves calculated with PVRD-FASP and Silvaco Atlas tool for a 1-D CdTe

solar cell validates reaction formalism and tool accuracy. A closer match with the Cu

SIMS profiles of Cu activated CdTe samples at four different anneal recipes to the

simulation results show practical applicability. A 1D simulation of full stack CdTe

device with Cu activation at 350C 3min anneal recipe and light JV curve simulation

demonstrates the tool capabilities in performing process and device simulations. CdTe

device simulation for understanding differences between traps and recombination

centers in grain boundaries demonstrate 2D capabilities.
ContributorsShaik, Abdul Rawoof (Author) / Vasileska, Dragica (Thesis advisor) / Ringhofer, Christian (Committee member) / Sankin, Igor (Committee member) / Brinkman, Daniel (Committee member) / Goodnick, Stephen (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2019