Matching Items (5)
Filtering by

Clear all filters

151957-Thumbnail Image.png
Description
Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The

Random Forests is a statistical learning method which has been proposed for propensity score estimation models that involve complex interactions, nonlinear relationships, or both of the covariates. In this dissertation I conducted a simulation study to examine the effects of three Random Forests model specifications in propensity score analysis. The results suggested that, depending on the nature of data, optimal specification of (1) decision rules to select the covariate and its split value in a Classification Tree, (2) the number of covariates randomly sampled for selection, and (3) methods of estimating Random Forests propensity scores could potentially produce an unbiased average treatment effect estimate after propensity scores weighting by the odds adjustment. Compared to the logistic regression estimation model using the true propensity score model, Random Forests had an additional advantage in producing unbiased estimated standard error and correct statistical inference of the average treatment effect. The relationship between the balance on the covariates' means and the bias of average treatment effect estimate was examined both within and between conditions of the simulation. Within conditions, across repeated samples there was no noticeable correlation between the covariates' mean differences and the magnitude of bias of average treatment effect estimate for the covariates that were imbalanced before adjustment. Between conditions, small mean differences of covariates after propensity score adjustment were not sensitive enough to identify the optimal Random Forests model specification for propensity score analysis.
ContributorsCham, Hei Ning (Author) / Tein, Jenn-Yun (Thesis advisor) / Enders, Stephen G (Thesis advisor) / Enders, Craig K. (Committee member) / Mackinnon, David P (Committee member) / Arizona State University (Publisher)
Created2013
151341-Thumbnail Image.png
Description
With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors that provide real time information of the traffic in the city, a change in these trajectories with time can reveal that the road network has changed. To detect changes, trajectories are modeled with a Hidden Markov Model (HMM). A modified training algorithm, for parameter estimation in HMM, called m-BaumWelch, is used to develop likelihood estimates under assumed changes and used to detect changes in trajectory data with time. Data from vehicles are used to test the method for change detection. Secondly, sequential pattern mining is used to develop a model to detect changes in frequent patterns occurring in trajectory data. The aim is to answer two questions: Are the frequent patterns still frequent in the new data? If they are frequent, has the time interval distribution in the pattern changed? Two different approaches are considered for change detection, frequency-based approach and distribution-based approach. The methods are illustrated with vehicle trajectory data. Finally, a model is developed for clustering and outlier detection in semantic trajectories. A challenge with clustering semantic trajectories is that both numeric and categorical attributes are present. Another problem to be addressed while clustering is that trajectories can be of different lengths and also have missing values. A tree-based ensemble is used to address these problems. The approach is extended to outlier detection in semantic trajectories.
ContributorsKondaveeti, Anirudh (Author) / Runger, George C. (Thesis advisor) / Mirchandani, Pitu (Committee member) / Pan, Rong (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2012
153109-Thumbnail Image.png
Description
This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the

This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the speed of propagation of the initial crack could differ from different test conditions and different solder materials. A quantitative analysis about the fatigue behavior of SAC lead-free solder under thermal preconditioning process is conducted. This thesis presents a method of making prediction of failure life of solder alloy by building a Weibull regression model. The failure life of solder on circuit board is assumed Weibull distributed. Different materials and test conditions could affect the distribution by changing the shape and scale parameters of Weibull distribution. The method is to model the regression of parameters with different test conditions as predictors based on Bayesian inference concepts. In the process of building regression models, prior distributions are generated according to the previous studies, and Markov Chain Monte Carlo (MCMC) is used under WinBUGS environment.
ContributorsXu, Xinyue (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
155450-Thumbnail Image.png
Description
Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems depend on the stochastic variation of environmental factors (solar irradiance,

Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems depend on the stochastic variation of environmental factors (solar irradiance, ambient temperature & wind speed) and random mechanical failures/repairs. Monte Carlo Simulation which is typically used to model such problems becomes too computationally intensive leading to simplifying state-space assumptions. Multi-state models for power system reliability offer a higher flexibility in providing a description of system state evolution and an accurate representation of probability. In this study, Universal Generating Functions (UGF) were used to solve such combinatorial problems. 8 grid connected Solar PV systems were analyzed with a combined capacity of about 5MW located in a hot-dry climate (Arizona) and accuracy of 98% was achieved when validated with real-time data. An analytics framework is provided to grid operators and utilities to effectively forecast energy produced by distributed energy assets and in turn, develop strategies for effective Demand Response in times of increased share of renewable distributed energy assets in the grid. Second part of this thesis extends the environmental modelling approach to develop an aging test to be run in conjunction with an accelerated test of Solar PV modules. Accelerated Lifetime Testing procedures in the industry are used to determine the dominant failure modes which the product undergoes in the field, as well as predict the lifetime of the product. UV stressor is one of the ten stressors which a PV module undergoes in the field. UV exposure causes browning of modules leading to drop in Short Circuit Current. This thesis presents an environmental modelling approach for the hot-dry climate and extends it to develop an aging test methodology. This along with the accelerated tests would help achieve the goal of correlating field failures with accelerated tests and obtain acceleration factor. This knowledge would help predict PV module degradation in the field within 30% of the actual value and help in knowing the PV module lifetime accurately.
ContributorsKadloor, Nikhil (Author) / Kuitche, Joseph (Thesis advisor) / Pan, Rong (Thesis advisor) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2017
149658-Thumbnail Image.png
Description
Hydropower generation is one of the clean renewable energies which has received great attention in the power industry. Hydropower has been the leading source of renewable energy. It provides more than 86% of all electricity generated by renewable sources worldwide. Generally, the life span of a hydropower plant is considered

Hydropower generation is one of the clean renewable energies which has received great attention in the power industry. Hydropower has been the leading source of renewable energy. It provides more than 86% of all electricity generated by renewable sources worldwide. Generally, the life span of a hydropower plant is considered as 30 to 50 years. Power plants over 30 years old usually conduct a feasibility study of rehabilitation on their entire facilities including infrastructure. By age 35, the forced outage rate increases by 10 percentage points compared to the previous year. Much longer outages occur in power plants older than 20 years. Consequently, the forced outage rate increases exponentially due to these longer outages. Although these long forced outages are not frequent, their impact is immense. If reasonable timing of rehabilitation is missed, an abrupt long-term outage could occur and additional unnecessary repairs and inefficiencies would follow. On the contrary, too early replacement might cause the waste of revenue. The hydropower plants of Korea Water Resources Corporation (hereafter K-water) are utilized for this study. Twenty-four K-water generators comprise the population for quantifying the reliability of each equipment. A facility in a hydropower plant is a repairable system because most failures can be fixed without replacing the entire facility. The fault data of each power plant are collected, within which only forced outage faults are considered as raw data for reliability analyses. The mean cumulative repair functions (MCF) of each facility are determined with the failure data tables, using Nelson's graph method. The power law model, a popular model for a repairable system, can also be obtained to represent representative equipment and system availability. The criterion-based analysis of HydroAmp is used to provide more accurate reliability of each power plant. Two case studies are presented to enhance the understanding of the availability of each power plant and represent economic evaluations for modernization. Also, equipment in a hydropower plant is categorized into two groups based on their reliability for determining modernization timing and their suitable replacement periods are obtained using simulation.
ContributorsKwon, Ogeuk (Author) / Holbert, Keith E. (Thesis advisor) / Heydt, Gerald T (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2011