Matching Items (8)
Filtering by

Clear all filters

152246-Thumbnail Image.png
Description
Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the

Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the cabin altitude pressure and outside altitude pressure to remove smoke from a flight deck was studied. Existing procedures for flight crews call for a descent down to a safe level for depressurizing the aircraft before taking further action. This process takes crucial time that is critical to the flight crew's ability to keep aware of the situation. This process involves a flight crews coordination and fast thinking to manually take control of the aircraft; which has become increasing more difficult due to the advancements in aircraft automation. Unfortunately this is the only accepted procedure that is used by a flight crew. Other products merely displace the smoke. This displacement is after the time it takes for the flight crew to set up the smoke displacement unit with no guarantee that a flight crew will be able to see or use all of the aircraft's controls. The Negative Pressure System will work automatically and not only use similar components already found on the aircraft, but work in conjunction with the smoke detection system and pressurization system so smoke removal can begin without having to descend down to a lower altitude. In order for this system to work correctly many factors must be taken into consideration. The size of a flight deck varies from aircraft to aircraft, therefore the ability for the system to efficiently remove smoke from an aircraft is taken into consideration. For the system to be feasible on an aircraft the cost and weight must be taken into consideration as the added fuel consumption due to weight of the system may be the limiting factor for installing such a system on commercial aircraft.
ContributorsDavies, Russell (Author) / Rogers, Bradley (Thesis advisor) / Palmgren, Dale (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2013
153317-Thumbnail Image.png
Description
Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy

Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, Arizona to evaluate IAQ as it relates to particulate matter (PM), carbonyls, and tobacco specific nitrosamines (TSNA).

To investigate the impacts of an energy efficiency retrofit on IAQ, indoor and outdoor air quality sampling was carried out at Sunnyslope Manor, a city-subsidized senior living apartment complex. Measured indoor formaldehyde levels before the building retrofit exceeded reference exposure limits, but in the long term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long term follow-up sampling within certain resident subpopulations (i.e. residents who reported smoking and residents who had lived longer at the apartment complex). Additionally, indoor glyoxal and methylglyoxal exceeded outdoor concentrations, with methylglyoxal being more prevalent pre-retrofit than glyoxal, suggesting different chemical pathways are involved. Indoor concentrations reported are larger than previous studies. TSNAs, specifically N'-nitrosonornicotine (NNN), 4-(methyl-nitrosamino)-4-(3-pyridyl)-butanal (NNA) and 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated post-retrofit at Sunnyslope Manor. Of the units tested, 86% of the smoking units and 46% of the non-smoking units had traces of at least one of the nitrosamines.
ContributorsFrey, Sarah E (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Destaillats, Hugo (Committee member) / Chizmeshya, Andrew (Committee member) / Arizona State University (Publisher)
Created2014
154130-Thumbnail Image.png
Description
Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed

Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed to achieve a superior performance in several areas including energy consumption and indoor environmental quality (IEQ). The primary objectives of this study are to investigate the performance of LEED certified facilities in terms of energy consumption and occupant satisfaction with IEQ, and introduce a framework to assess the performance of LEED certified buildings.

This thesis attempts to achieve the research objectives by examining the LEED certified buildings on the Arizona State University (ASU) campus in Tempe, AZ, from two complementary perspectives: the Macro-level and the Micro-level. Heating, cooling, and electricity data were collected from the LEED-certified buildings on campus, and their energy use intensity was calculated in order to investigate the buildings' actual energy performance. Additionally, IEQ occupant satisfaction surveys were used to investigate users' satisfaction with the space layout, space furniture, thermal comfort, indoor air quality, lighting level, acoustic quality, water efficiency, cleanliness and maintenance of the facilities they occupy.

From a Macro-level perspective, the results suggest ASU LEED buildings consume less energy than regional counterparts, and exhibit higher occupant satisfaction than national counterparts. The occupant satisfaction results are in line with the literature on LEED buildings, whereas the energy results contribute to the inconclusive body of knowledge on energy performance improvements linked to LEED certification. From a Micro-level perspective, data analysis suggest an inconsistency between the LEED points earned for the Energy & Atmosphere and IEQ categories, on one hand, and the respective levels of energy consumption and occupant satisfaction on the other hand. Accordingly, this study showcases the variation in the performance results when approached from different perspectives. This contribution highlights the need to consider the Macro-level and Micro-level assessments in tandem, and assess LEED building performance from these two distinct but complementary perspectives in order to develop a more comprehensive understanding of the actual building performance.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2015
154173-Thumbnail Image.png
Description
Vapor intrusion (VI), can pose health risks to building occupants. Assessment and mitigation at VI impacted sites have been guided by a site conceptual model (SCM) in which vapors originate from subsurface sources, diffuse through soil matrix and enter into a building by gas flow across foundation cracks. Alternative VI

Vapor intrusion (VI), can pose health risks to building occupants. Assessment and mitigation at VI impacted sites have been guided by a site conceptual model (SCM) in which vapors originate from subsurface sources, diffuse through soil matrix and enter into a building by gas flow across foundation cracks. Alternative VI pathways and groundwater table fluctuations are not often considered.

Alternative VI pathways, involving vapor transport along sewer lines and other subsurface infrastructure, have recently been found to be significant contributors to VI impacts at some sites. This study evaluated approaches for identifying and characterizing the significance of alternative VI pathways and assessed the effectiveness of conventional mitigation at a site with an alternative VI pathway that can be manipulated to be on or off. The alternative pathway could not be identified using conventional pathway assessment procedures and can only be discovered under controlled pressure method (CPM) conditions. Measured emission rates were two orders of magnitude greater than screening model estimates and sub-foundation vertical soil gas profiles changed and were no longer consistent with the conventional VI conceptual model when the CPM test was conducted. The pipe flow VI pathway reduced the vacuum performance of the sub-slab depressurization (SSD) VI mitigation system, but the SSD system still provided sufficient protection to the house.

The relationship between groundwater table fluctuations and subsurface vapor emissions and transport is examined using multi-year data from the field site, and is studied in the laboratory. In addition, a broader range of conditions is examined through use of modeling validated with the experimental data. The results indicate that fluctuating groundwater tables will lead to amplified volatile organic chemical (VOC) emissions from groundwater to soil surface relative to steady water table elevation, however, the magnitude of this amplification is less concerned when long-term water fluctuation present. No clear correlations were found between VOC emissions and water table changes at the study site where annual water table fluctuations of about 0.3 m existed. Significant VOC emission amplifications by water table fluctuation would be expected under shallow groundwater conditions according to model analysis results.
ContributorsGuo, Yuanming (Author) / Johnson, Paul C (Thesis advisor) / Fraser, Matthew (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2015
153684-Thumbnail Image.png
Description
Vapor intrusion (VI) pathway assessment often involves the collection and analysis of groundwater, soil gas, and indoor air data. There is temporal variability in these data, but little is understood about the characteristics of that variability and how it influences pathway assessment decision-making. This research included the first-ever collection

Vapor intrusion (VI) pathway assessment often involves the collection and analysis of groundwater, soil gas, and indoor air data. There is temporal variability in these data, but little is understood about the characteristics of that variability and how it influences pathway assessment decision-making. This research included the first-ever collection of a long-term high-frequency indoor air data set at a house with VI impacts overlying a dilute chlorinated solvent groundwater plume. It also included periodic synoptic snapshots of groundwater and soil gas data and high-frequency monitoring of building conditions and environmental factors. Indoor air trichloroethylene (TCE) concentrations varied over three orders-of-magnitude under natural conditions, with the highest daily VI activity during fall, winter, and spring months. These data were used to simulate outcomes from common sampling strategies, with the result being that there was a high probability (up to 100%) of false-negative decisions and poor characterization of long-term exposure. Temporal and spatial variability in subsurface data were shown to increase as the sampling point moves from source depth to ground surface, with variability of an order-of-magnitude or more for sub-slab soil gas. It was observed that indoor vapor sources can cause subsurface vapor clouds and that it can take days to weeks for soil gas plumes created by indoor sources to dissipate following indoor source removal. A long-term controlled pressure method (CPM) test was conducted to assess its utility as an alternate approach for VI pathway assessment. Indoor air concentrations were similar to maximum concentrations under natural conditions (9.3 μg/m3 average vs. 13 μg/m3 for 24 h TCE data) with little temporal variability. A key outcome was that there were no occurrences of false-negative results. Results suggest that CPM tests can produce worst-case exposure conditions at any time of the year. The results of these studies highlight the limitations of current VI pathway assessment approaches and demonstrate the need for robust alternate diagnostic tools, such as CPM, that lead to greater confidence in data interpretation and decision-making.
ContributorsHolton, Chase Weston (Author) / Johnson, Paul C (Thesis advisor) / Fraser, Matthew (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2015
154192-Thumbnail Image.png
Description
Up to 25 percent of the operating budget for contaminated site restoration projects is spent on site characterization, including long-term monitoring of contaminant concentrations. The sensitivity, selectivity, and reproducibility of analytical methods have improved to the point where sampling techniques bear the primary responsibility for the accuracy and precision of

Up to 25 percent of the operating budget for contaminated site restoration projects is spent on site characterization, including long-term monitoring of contaminant concentrations. The sensitivity, selectivity, and reproducibility of analytical methods have improved to the point where sampling techniques bear the primary responsibility for the accuracy and precision of the data. Most samples represent discrete concentrations in time and space; with sampling points frequently limited in both dimensions, sparse data sets are heavily extrapolated and the quality of data further limited.

Methods are presented for characterizing contaminants in water (groundwater and surface waters) and indoor air. These techniques are integrative, providing information averaged over time and/or space, as opposed to instantaneous point measurements. Contaminants are concentrated from the environment, making these methods applicable to trace contaminants. These methods have the potential to complement existing techniques, providing the practitioner with opportunities to reduce costs and improve the quality of the data used in decision making.

A conceptual model for integrative sampling of environmental waters is developed and a literature review establishes an advantage in precision for active samplers. A programmable sampler was employed to measure the concentration of chromate in a shallow aquifer exhibiting time-dependent contaminant concentrations, providing a unique data set and sustainability benefits. The analysis of heat exchanger condensate, a waste stream generated by air conditioning, is demonstrated in a non-intrusive method for indoor air quality assessment. In sum, these studies present new opportunities for effective, sustainable environmental characterization.
ContributorsRoll, Isaac B (Author) / Halden, Rolf U. (Thesis advisor) / Johnson, Paul C (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2015
149636-Thumbnail Image.png
Description
The modeling and simulation of airflow dynamics in buildings has many applications including indoor air quality and ventilation analysis, contaminant dispersion prediction, and the calculation of personal occupant exposure. Multi-zone airflow model software programs provide such capabilities in a manner that is practical for whole building analysis. This research addresses

The modeling and simulation of airflow dynamics in buildings has many applications including indoor air quality and ventilation analysis, contaminant dispersion prediction, and the calculation of personal occupant exposure. Multi-zone airflow model software programs provide such capabilities in a manner that is practical for whole building analysis. This research addresses the need for calibration methodologies to improve the prediction accuracy of multi-zone software programs. Of particular interest is accurate modeling of airflow dynamics in response to extraordinary events, i.e. chemical and biological attacks. This research developed and explored a candidate calibration methodology which utilizes tracer gas (e.g., CO2) data. A key concept behind this research was that calibration of airflow models is a highly over-parameterized problem and that some form of model reduction is imperative. Model reduction was achieved by proposing the concept of macro-zones, i.e. groups of rooms that can be combined into one zone for the purposes of predicting or studying dynamic airflow behavior under different types of stimuli. The proposed calibration methodology consists of five steps: (i) develop a "somewhat" realistic or partially calibrated multi-zone model of a building so that the subsequent steps yield meaningful results, (ii) perform an airflow-based sensitivity analysis to determine influential system drivers, (iii) perform a tracer gas-based sensitivity analysis to identify macro-zones for model reduction, (iv) release CO2 in the building and measure tracer gas concentrations in at least one room within each macro-zone (some replication in other rooms is highly desirable) and use these measurements to further calibrate aggregate flow parameters of macro-zone flow elements so as to improve the model fit, and (v) evaluate model adequacy of the updated model based on some metric. The proposed methodology was first evaluated with a synthetic building and subsequently refined using actual measured airflows and CO2 concentrations for a real building. The airflow dynamics of the buildings analyzed were found to be dominated by the HVAC system. In such buildings, rectifying differences between measured and predicted tracer gas behavior should focus on factors impacting room air change rates first and flow parameter assumptions between zones second.
ContributorsSnyder, Steven Christopher (Author) / Reddy, T. Agami (Thesis advisor) / Addison, Marlin S. (Committee member) / Bryan, Harvey J. (Committee member) / Arizona State University (Publisher)
Created2011
173002-Thumbnail Image.png
Description

In the early 2000s, Richard S. Legro, Mark V. Sauer, Gilbert L. Mottla, Kevin S. Richter, William C. Dodson, and Duanping Liao studied the relationship between air pollution and reproductive complications. In the United States, Legro’s team tracked thousands of women undergoing in vitro fertilization, or IVF, along with the

In the early 2000s, Richard S. Legro, Mark V. Sauer, Gilbert L. Mottla, Kevin S. Richter, William C. Dodson, and Duanping Liao studied the relationship between air pollution and reproductive complications. In the United States, Legro’s team tracked thousands of women undergoing in vitro fertilization, or IVF, along with the air quality of both the IVF clinics and patients’ home locations. IVF is a reproductive technology during which a physician obtains mature eggs from a patient’s ovaries and fertilizes them with sperm in a lab setting outside of the body, after which the physician transfers the fertilized eggs into the patient’s uterus. As stated in Legro’s publication, Legro suspected that poor air quality would adversely affect live birth rates during IVF, so he compiled and analyzed the various types of pollutants that IVF patients were naturally exposed to in their homes and clinics. Legro’s experiment led to an increased awareness among patients about the dangers of conceiving via IVF in highly polluted areas.

Created2021-05-05