Matching Items (4)
Filtering by

Clear all filters

149766-Thumbnail Image.png
Description
Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses,

Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses, and riparian microhabitat characteristics along three reaches (i.e., wildland, urban rehabilitated, and urban disturbed) of the Salt River, Arizona. The surrounding uplands of the two urbanized reaches were dominated by the built environment (i.e., Phoenix metropolitan area). I predicted that greater diversity of microhabitat and lower urbanization would promote herpetofauna abundance, richness, and diversity. In 2010, at each reach, I performed herpetofauna visual surveys five times along eight transects (n=24) spanning the riparian zone. I quantified twenty one microhabitat characteristics such as ground substrate, vegetative cover, woody debris, tree stem density, and plant species richness along each transect. Herpetofauna species richness was the greatest along the wildland reach, and the lowest along the urban disturbed reach. The wildland reach had the greatest diversity indices, and diversity indices of the two urban reaches were similar. Abundance of herpetofauna was approximately six times lower along the urban disturbed reach compared to the two other reaches, which had similar abundances. Principal Component Analysis (PCA) reduced microhabitat variables to five factors, and significant differences among reaches were detected. Vegetation structure complexity, vegetation species richness, as well as densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrows had a positive correlation with at least one of the three herpetofauna community parameter quantified (i.e., herpetofauna abundance, species richness, and diversity indices), and had a positive correlation with at least one herpetofauna species. Overall, rehabilitation activities positively influenced herpetofauna abundance and species richness, whereas urbanization negatively influenced herpetofauna diversity indices. Based on herpetofauna/microhabitat correlations established, I developed recommendations regarding microhabitat features that should be created in order to promote herpetofauna when rehabilitating degraded riparian systems. Recommendations are to plant vegetation of different growth habit, provide woody debris, plant Populus, Salix, and Prosopis of various ages and sizes, and to promote small mammal abundance.
ContributorsBanville, Mélanie Josianne (Author) / Bateman, Heather L (Thesis advisor) / Brady, Ward (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
151061-Thumbnail Image.png
Description
Despite years of effort, the field of conservation biology still struggles to incorporate theories of animal behavior. I introduce in Chapter I the issues surrounding the disconnect between behavioral ecology and conservation biology, and propose the use of behavioral knowledge in population viability analysis. In Chapter II, I develop a

Despite years of effort, the field of conservation biology still struggles to incorporate theories of animal behavior. I introduce in Chapter I the issues surrounding the disconnect between behavioral ecology and conservation biology, and propose the use of behavioral knowledge in population viability analysis. In Chapter II, I develop a framework that uses three strategies for incorporating behavior into demographic models, outline the costs of each strategy through decision analysis, and build on previous work in behavioral ecology and demography. First, relevant behavioral mechanisms should be included in demographic models used for conservation decision-making. Second, I propose rapid behavioral assessment as a useful tool to approximate demographic rates through regression of demographic phenomena on observations of related behaviors. This technique provides behaviorally estimated parameters that may be applied to population viability analysis for use in management. Finally, behavioral indices can be used as warning signs of population decline. The proposed framework combines each strategy through decision analysis to provide quantitative rules that determine when incorporating aspects of conservation behavior may be beneficial to management. Chapter III applies this technique to estimate birthrate in a colony of California sea lions in the Gulf of California, Mexico. This study includes a cost analysis of the behavioral and traditional parameter estimation techniques. I then provide in Chapter IV practical recommendations for applying this framework to management programs along with general guidelines for the development of rapid behavioral assessment.
ContributorsWildermuth, Robert (Author) / Gerber, Leah R. (Thesis advisor) / Collins, James (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
154182-Thumbnail Image.png
Description
Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these

Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these fisheries are intense, poorly regulated, and overlap with foraging hot spots of endangered sea turtles. In partnership with researchers, fishers, managers, and practitioners from Mexico and the United States, I documented bycatch rates of loggerhead turtles at BCS that represent the highest known megafauna bycatch rates worldwide. Concurrently, I conducted a literature review that determined gear modifications were generally more successful than other commonly used fisheries management strategies for mitigating bycatch of vulnerable megafauna including seabirds, marine mammals, and sea turtles. I then applied these results by partnering with researchers, local fishers, and Mexico’s federal fisheries science agency to develop and test two gear modifications (i.e. buoyless and illuminated nets) in operating net fisheries at BCS as potential solutions to reduce bycatch of endangered sea turtles, improve fisheries sustainability, and maintain fisher livelihoods. I found that buoyless nets significantly reduced mean turtle bycatch rates by 68% while maintaining target catch rates and composition. By contrast, illuminated nets did not significantly reduce turtle bycatch rates across day-night periods, although they reduced mean turtle bycatch rates by 50% at night. Illuminated nets, however, significantly reduced mean rates of total bycatch biomass by 34% across day-night periods while maintaining target fish catch and market value. I conclude with a policy analysis of the unilateral identification of Mexico by the U.S. State Department under section 610 of the Magnusson-Stevens Fishery Conservation and Management Act for failure to manage bycatch of loggerhead turtles at BCS. Taken together, the gear modifications developed and tested here represent promising bycatch mitigation solutions with strong potential for commercial adoption, but fleet-wide conversion to more selective and turtle-friendly gear (e.g. hook and line and/or traps) at BCS, coupled with coordinated international conservation action, is ultimately needed to eliminate sea turtle bycatch and further improve fisheries sustainability.
ContributorsSenko, Jesse (Author) / Smith, Andrew (Thesis advisor) / Boggess, May (Committee member) / Chhetri, Nalini (Committee member) / Jenkins, Lekelia (Committee member) / Minteer, Ben (Committee member) / Arizona State University (Publisher)
Created2015
Description
Megafauna species worldwide have undergone dramatic declines since the end of the Pleistocene, twelve thousand years ago. In response, there have been numerous calls to increase conservation attention to these ecologically important species. However, introduced megafauna continue to be treated as pests. This thesis evaluates the extent of this conservation

Megafauna species worldwide have undergone dramatic declines since the end of the Pleistocene, twelve thousand years ago. In response, there have been numerous calls to increase conservation attention to these ecologically important species. However, introduced megafauna continue to be treated as pests. This thesis evaluates the extent of this conservation paradox in relation to changing megafauna diversity from the Pleistocene to the Anthropocene and finds that introductions have provided refuge for a substantial number threatened and endangered megafaunal species and has restored generic diversity levels per continent to levels closer to the Pleistocene than the Holocene. Furthermore, this thesis describes a previously unstudied behavior of wild burros (Equus asinus), an introduced megafauna whose pre-domestic ancestors are Critically Endangered. Wild burros dig wells to access groundwater and in doing so substantially increase water availability on several scales, create sites that are visited by numerous species and are comparable to natural water sources in terms of species richness, and provide germination nurseries for important riparian pioneer plant species. My results suggest that relaxing concepts of nativity in an age of extinction will provide new understandings of ecological function and can help focus attention on broader conservation goals.
ContributorsLundgren, Erick J (Author) / Stromberg, Juliet (Thesis advisor) / Wu, Jianguo (Committee member) / Nieto, Nathan (Committee member) / Arizona State University (Publisher)
Created2017