Matching Items (8)
Filtering by

Clear all filters

153267-Thumbnail Image.png
Description
In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent,

In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent, Diorhabda carinulata, and riparian restoration.

During 2013 and 2014, vegetation and herpetofauna were monitored at 21 riparian locations along the Virgin River via trapping and visual encounter surveys. Study sites were divided into four stand types based on density and percent cover of dominant trees (Tamarix, Prosopis, Populus, and Salix) and presence of restoration activities: Tam, Tam-Pros, Tam-Pop/Sal, and Restored Tam-Pop/Sal. Restoration activities consisted of mechanical removal of non-native trees, transplanting native trees, and introduction of water flow. All sites were affected by biological control. I predicted that herpetofauna abundance would vary between stand types and that herpetofauna abundance would be greatest in Restored Tam-Pop/Sal sites due to increased habitat openness and variation following restoration efforts.

Results from trapping indicated that Restored Tam-Pop/Sal sites had three times more total lizard and eight times more Sceloporus uniformis captures than other stand types. Anaxyrus woodhousii abundance was greatest in Tam-Pop/Sal and Restored Tam-Pop/Sal sites. Visual encounter surveys indicated that herpetofauna abundance was greatest in the Restored Tam-Pop/Sal site compared to the adjacent Unrestored Tam-Pop/Sal site. Habitat variables were reduced to six components using a principle component analysis and significant differences were detected among stand types. Restored Tam-Pop/Sal sites were most similar to Tam-Pop/Sal sites. S. uniformis were positively associated with large woody debris and high densities of Populus, Salix, and large diameter Prosopis.

Restored Tam-Pop/Sal sites likely supported higher abundances of herpetofauna, as these areas exhibited greater habitat heterogeneity. Restoration activities created a mosaic habitat by reducing canopy cover and increasing native tree density and surface water. Natural resource managers should consider implementing additional restoration efforts following biological control when attempting to restore riparian areas dominated by Tamarix and other non-native trees.
ContributorsMosher, Kent (Author) / Bateman, Heather L (Thesis advisor) / Stromberg, Juliet C. (Committee member) / Miller, William H. (Committee member) / Arizona State University (Publisher)
Created2014
149766-Thumbnail Image.png
Description
Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses,

Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses, and riparian microhabitat characteristics along three reaches (i.e., wildland, urban rehabilitated, and urban disturbed) of the Salt River, Arizona. The surrounding uplands of the two urbanized reaches were dominated by the built environment (i.e., Phoenix metropolitan area). I predicted that greater diversity of microhabitat and lower urbanization would promote herpetofauna abundance, richness, and diversity. In 2010, at each reach, I performed herpetofauna visual surveys five times along eight transects (n=24) spanning the riparian zone. I quantified twenty one microhabitat characteristics such as ground substrate, vegetative cover, woody debris, tree stem density, and plant species richness along each transect. Herpetofauna species richness was the greatest along the wildland reach, and the lowest along the urban disturbed reach. The wildland reach had the greatest diversity indices, and diversity indices of the two urban reaches were similar. Abundance of herpetofauna was approximately six times lower along the urban disturbed reach compared to the two other reaches, which had similar abundances. Principal Component Analysis (PCA) reduced microhabitat variables to five factors, and significant differences among reaches were detected. Vegetation structure complexity, vegetation species richness, as well as densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrows had a positive correlation with at least one of the three herpetofauna community parameter quantified (i.e., herpetofauna abundance, species richness, and diversity indices), and had a positive correlation with at least one herpetofauna species. Overall, rehabilitation activities positively influenced herpetofauna abundance and species richness, whereas urbanization negatively influenced herpetofauna diversity indices. Based on herpetofauna/microhabitat correlations established, I developed recommendations regarding microhabitat features that should be created in order to promote herpetofauna when rehabilitating degraded riparian systems. Recommendations are to plant vegetation of different growth habit, provide woody debris, plant Populus, Salix, and Prosopis of various ages and sizes, and to promote small mammal abundance.
ContributorsBanville, Mélanie Josianne (Author) / Bateman, Heather L (Thesis advisor) / Brady, Ward (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
155314-Thumbnail Image.png
Description
Species conservation requires an understanding of the habitats on which that species depends as well as how it moves within and among those habitats. Knowledge of these spatial and temporal patterns is vital for effective management and research study design. Bubbling Ponds Hatchery in Cornville, Arizona, supports a robust population

Species conservation requires an understanding of the habitats on which that species depends as well as how it moves within and among those habitats. Knowledge of these spatial and temporal patterns is vital for effective management and research study design. Bubbling Ponds Hatchery in Cornville, Arizona, supports a robust population of the northern Mexican gartersnake (Thamnophis eques megalops), which was listed as threatened under the Endangered Species Act in 2014. Natural resource managers are interested in understanding the ecology of gartersnakes at this site to guide hatchery operations and to serve as a model for habitat creation and restoration. My objectives were to identify habitat selection and activity patterns of northern Mexican gartersnakes at the hatchery and how frequency of monitoring affects study results. I deployed transmitters on 42 individual gartersnakes and documented macro- and microhabitat selection, daily and seasonal activity patterns, and movement distances. Habitat selection and movements were similar between males and females and varied seasonally. During the active season (March–October), snakes primarily selected wetland edge habitat with abundant cover and were more active and moved longer distances than during other parts of the year. Gestating females selected similar locations but with less dense cover. During the inactive season (November–February), snakes were less mobile and selected upland habitats, including rocky slopes with abundant vegetation. Snakes displayed diurnal patterns of activity. Estimates of daily distance traveled decreased with less-frequent monitoring; a sampling interval of once every 24 hours yielded only 53–62% of known daily distances moved during the active season. These results can help inform management activities and research design. Conservation of this species should incorporate a landscape-level approach that includes abundant wetland edge habitat with connected upland areas. Resource managers and researchers should carefully assess timing and frequency of activities in order to meet project objectives.
ContributorsSprague, Tiffany A (Author) / Bateman, Heather L (Thesis advisor) / Cunningham, Stan C (Committee member) / Jones, Thomas R (Committee member) / Nowak, Erika M. (Committee member) / Arizona State University (Publisher)
Created2017
187396-Thumbnail Image.png
Description
Understanding how wildlife interact with humans and the built environment is critical as urbanization contributes to habitat change and fragmentation globally. In urban and suburban areas, wildlife and people are often in close quarters, leading to human-wildlife interactions (HWI). In the greater Phoenix Metropolitan Area, Arizona, HWI can involve reptiles

Understanding how wildlife interact with humans and the built environment is critical as urbanization contributes to habitat change and fragmentation globally. In urban and suburban areas, wildlife and people are often in close quarters, leading to human-wildlife interactions (HWI). In the greater Phoenix Metropolitan Area, Arizona, HWI can involve reptiles such as venomous (family Viperidae, e.g., rattlesnakes) and nonvenomous (family Colubridae, e.g., gophersnakes) snakes. Rattlesnake Solutions, LLC, a local business, removes and relocates snakes from homes and businesses in the Phoenix area and, as a collaborator, has provided records of snake removals. Using these records, I investigated taxa-specific habitat trends at two spatial scales. At the neighborhood scale (n = 60), I found that removals occurred in yards with abundant cover opportunities. At the landscape scale (n = 764), nonvenomous snakes were removed from areas of higher urbanization compared to venomous snakes. Clients of Rattlesnake Solutions, LLC, were asked to answer a short survey, designed by K. Larson and colleagues, regarding the circumstances of their snake removal event and their attitudes, perceptions, and experiences with snakes. I used responses from this survey (n =271) to investigate if prior experience with snakes influences reported attitudes towards snakes. Respondents with prior snake experiences reported more positive attitudes towards snakes and were more consistent across their responses than those without prior snake experiences. Continuing inquiry into the urban ecology of these snakes is important to fostering coexistence between snakes and people that call Phoenix home.
ContributorsEnloe, Annika (Author) / Bateman, Heather L (Thesis advisor) / Lewis, Jesse (Committee member) / Larson, Kelli (Committee member) / Arizona State University (Publisher)
Created2023
157704-Thumbnail Image.png
Description
Although many studies have identified environmental factors as primary drivers of bird richness and abundance, there is still uncertainty about the extent to which climate, topography and vegetation influence richness and abundance patterns seen in local extents of the northern Sonoran Desert. I investigated how bird richness and abundance differed

Although many studies have identified environmental factors as primary drivers of bird richness and abundance, there is still uncertainty about the extent to which climate, topography and vegetation influence richness and abundance patterns seen in local extents of the northern Sonoran Desert. I investigated how bird richness and abundance differed between years and seasons and which environmental variables most influenced the patterns of richness and abundance in the Greater Phoenix Metropolitan Area.

I compiled a geodatabase of climate, bioclimatic (interactions between precipitation and temperature), vegetation, soil, and topographical variables that are known to influence both richness and abundance and used 15 years of bird point count survey data from urban and non-urban sites established by Central Arizona–Phoenix Long-Term Ecological Research project to test that relationship. I built generalized linear models (GLM) to elucidate the influence of each environmental variable on richness and abundance values taken from 47 sites. I used principal component analysis (PCA) to reduce 43 environmental variables to 9 synthetic factors influenced by measures of vegetation, climate, topography, and energy. I also used the PCA to identify uncorrelated raw variables and modeled bird richness and abundance with these uncorrelated environmental variables (EV) with GLM.

I found that bird richness and abundance were significantly different between seasons, but that richness and winter abundance were not significantly different across years. Bird richness was most influenced by soil characteristics and vegetation while abundance was most influenced by vegetation and climate. Models using EV as independent variables consistently outperformed those models using synthetically produced components from PCA. The results suggest that richness and abundance are both driven by climate and aspects of vegetation that may also be influenced by climate such as total annual precipitation and average temperature of the warmest quarter. Annual oscillations of bird richness and abundance throughout the urban Phoenix area seem to be strongly associated with climate and vegetation.
ContributorsBoehme, Cameron (Author) / Albuquerque, Fabio Suzart (Thesis advisor) / Bateman, Heather L (Committee member) / Saul, Steven E (Committee member) / Arizona State University (Publisher)
Created2019
157978-Thumbnail Image.png
Description
Riparian areas are an important resource, especially in the arid southwest, for many wildlife species. Understanding species occurrence in areas dominated by non-native vegetation is important to determine if management should be implemented. Saltcedar (Tamarix spp.) is one of the most prevalent non-native trees in riparian areas in the southwest

Riparian areas are an important resource, especially in the arid southwest, for many wildlife species. Understanding species occurrence in areas dominated by non-native vegetation is important to determine if management should be implemented. Saltcedar (Tamarix spp.) is one of the most prevalent non-native trees in riparian areas in the southwest United States and can alter vegetation structure, but little is known about how medium and large carnivores use stands of saltcedar. Three riparian forest types make up the San Pedro riparian corridor: non-native saltcedar, native mesquite (Prosopis spp.) bosque, and a mixture of native cottonwood (Populus fremontii) and willow (Salix goodingii) woodlands. My goals were to determine relative use, diversity, and occupancy of medium and large mammals across forest types to evaluate use of the non-native stands. I sampled mammals along approximately 25.7 river kilometers between July 2017 and October 2018, using 18 trail cameras (six per forest type) spaced 1km apart. I summarized environmental variables around the camera sites to relate them to species occupancy and reduced them to 4 components using a Principal Component Analysis (PCA). I observed 14 carnivore species, including bobcat (Lynx rufus), coyote (Canis latrans), and coati (Nasua narica) over 7,692 trap nights. Occupancy of some species may have been influenced by the different components, but models showed high standard errors, making it difficult to draw firm conclusions. Most mammal species used all three forest types at some level and no surveyed forest type was completely avoided or unused. Coyote tended to have greater use in the mesquite forest while canids trended toward greater use in saltcedar forest. Based on two-species occupancy models as well as activity overlap patterns, subordinate species did not appear to avoid dominant species. No species seems significantly affected by non-native saltcedar at this time.
ContributorsHerzog, Cheyenne J (Author) / Bateman, Heather L (Thesis advisor) / Lewis, Jesse (Committee member) / Cunningham, Stan (Committee member) / Arizona State University (Publisher)
Created2019
158622-Thumbnail Image.png
Description
Land use change driven by human population expansion continues to influence

the integrity and configuration of riparian corridors worldwide. Wildlife viability in semi-arid regions depend heavily on the connectivity of riparian corridors, since water is the primary limiting resource. The Madrean Archipelago in northern Mexico and southwestern United States (US) is

Land use change driven by human population expansion continues to influence

the integrity and configuration of riparian corridors worldwide. Wildlife viability in semi-arid regions depend heavily on the connectivity of riparian corridors, since water is the primary limiting resource. The Madrean Archipelago in northern Mexico and southwestern United States (US) is a biodiversity hotspot that supports imperiled wildlife like jaguar (Panthera onca) and ocelot (Leopardus pardalis). Recent and ongoing infrastructure developments in the historically understudied US-México borderlands region, such as the border wall and expansion of Federal Highway 2, are altering wildlife movement and disconnecting essential habitat.

I used wildlife cameras to assess species occupancy, abundance, and related habitat variables affecting the use of washes as corridors for mammals in semi-arid Los Ojos (LO), a private ranch within a 530 km2 priority conservation area in Sonora, México located south of the border and Federal Highway 2. From October 2018 to April 2019, I deployed 21 wildlife cameras in five different riparian corridors within LO. I used single- season occupancy models and Royal Nichols abundance models to explore the relationship between habitat variables and use of riparian corridors by mammal communities of conservation concern within this region.

Twenty-one mammal species were recorded in the study area, including American black bear (Ursus americanus), white-tailed deer (Odocoileus virginianus) and the first sighting of jaguar (Panthera onca) in this region in 25 years. For the 11 medium- and large-bodied mammals recorded, habitat variables related to perennial river characteristics (distance to river, weekly water, and site width) and remoteness (distance from highway, elevation, and NDVI) were important for occupancy, but the direction of the relationship varied by species. For commonly observed species such as mountain lion (Puma concolor) and white-nosed coati (Nasua narica), topographic variety was highly informative for species abundance. These results highlight the importance of habitat diversity when identifying corridors for future protection to conserve wildlife communities in semi-arid regions. Additionally, this study provides robust evidence in support of mitigation measures (e.g. funnel fencing, over- or under- passes) along Federal Highway 2, and other barriers such as the border wall, to facilitate wildlife connectivity.
ContributorsRagan, Kinley (Author) / Hall, Sharon J (Thesis advisor) / Schipper, Jan (Thesis advisor) / Bateman, Heather L (Committee member) / Arizona State University (Publisher)
Created2020
190968-Thumbnail Image.png
Description
Riparian ecosystems comprise less than 2% of the landscape in the arid western U.S. yet provide habitat and resources to over half of arid-land wildlife species, including a broad diversity of anurans (frogs and toads). I surveyed anurans using passive acoustic monitoring to capture spring advertisement calls in wilderness area

Riparian ecosystems comprise less than 2% of the landscape in the arid western U.S. yet provide habitat and resources to over half of arid-land wildlife species, including a broad diversity of anurans (frogs and toads). I surveyed anurans using passive acoustic monitoring to capture spring advertisement calls in wilderness area tributaries of the Verde River, Arizona, USA. In the spring and summer of 2021 and 2022, 13-29 autonomous recording units (ARUs) were deployed along perennial, intermittent, and ephemeral reaches across eight headwater streams. I characterized stream reaches based on the percent of pool, riffle, run, and side channel habitat within 100 meters of each ARU. I quantified substrate, discharge at 95% exceedance probability, flow width, and canopy cover at each site. To relate anuran occupancy and relative habitat use to environmental and hydrological variables, I evaluated acoustic data using single-species occupancy and Royle-Nichols and N-mixture (relative habitat use) models. Four species were detected in this study: canyon treefrog (Hyla arenicolor), red-spotted toad (Anaxyrus punctatus), Woodhouse’s toad (Anaxyrus woodhousii), and non-native American bullfrog (Lithobates catesbeianus), with canyon treefrog being the most ubiquitous species observed. Occupancy of canyon treefrog was greater at perennial and intermittent sites compared to ephemeral sites, and presence of pool was the most important driver of canyon treefrog occupancy and relative habitat use. Notably, this study did not detect several species with historical records in the middle Verde River watershed, including Arizona toad (Anaxyrus microscaphus) and Northern leopard frog (Lithobates pipiens). Given climate change-related flow declines and intensifying demands for water in the Southwest, maintaining stream flows that provide consistent and suitable hydroregimes for anuran breeding and larval development is of increasing importance. Determining habitat use and flow regimes necessary to support anuran populations can aid in prioritization of conservation actions related to water management and predict how changes in water availability may impact stream-breeding anurans.
ContributorsHuck, Margaret (Author) / Bateman, Heather L (Thesis advisor) / Albuquerque, Fabio S (Thesis advisor) / Lewis, Jesse S (Committee member) / Arizona State University (Publisher)
Created2023