Matching Items (23)

153236-Thumbnail Image.png

Growth and characterization of pyrite thin films for photovoltaic applications

Description

A series of pyrite thin films were synthesized using a novel sequential evaporation

technique to study the effects of substrate temperature on deposition rate and micro-structure of

the deposited material. Pyrite was

A series of pyrite thin films were synthesized using a novel sequential evaporation

technique to study the effects of substrate temperature on deposition rate and micro-structure of

the deposited material. Pyrite was deposited in a monolayer-by-monolayer fashion using

sequential evaporation of Fe under high vacuum, followed by sulfidation at high S pressures

(typically > 1 mTorr to 1 Torr). Thin films were synthesized using two different growth processes; a

one-step process in which a constant growth temperature is maintained throughout growth, and a

three-step process in which an initial low temperature seed layer is deposited, followed by a high

temperature layer, and then finished with a low temperature capping layer. Analysis methods to

analyze the properties of the films included Glancing Angle X-Ray Diffraction (GAXRD),

Rutherford Back-scattering Spectroscopy (RBS), Transmission Electron Microscopy (TEM),

Secondary Ion Mass Spectroscopy (SIMS), 2-point IV measurements, and Hall effect

measurements. Our results show that crystallinity of the pyrite thin film improves and grain size

increases with increasing substrate temperature. The sticking coefficient of Fe was found to

increase with increasing growth temperature, indicating that the Fe incorporation into the growing

film is a thermally activated process.

Contributors

Agent

Created

Date Created
  • 2014

152081-Thumbnail Image.png

Growth and characterization of novel thin films for microelectronic applications

Description

I studied the properties of novel Co2FeAl0.5Si0.5 (CFAS), ZnGeAs2, and FeS2 (pyrite) thin films for microelectronic applications ranging from spintronic to photovoltaic. CFAS is a half metal with theoretical spin

I studied the properties of novel Co2FeAl0.5Si0.5 (CFAS), ZnGeAs2, and FeS2 (pyrite) thin films for microelectronic applications ranging from spintronic to photovoltaic. CFAS is a half metal with theoretical spin polarization of 100%. I investigated its potential as a spin injector, for spintronic applications, by studying the critical steps involved in the injection of spin polarized electron populations from tunnel junctions containing CFAS electrodes. Epitaxial CFAS thin films with L21 structure and saturation magnetizations of over 1200 emu/cm3 were produced by optimization of the sputtering growth conditions. Point contact Andreev reflection measurements show that the spin polarization at the CFAS electrode surface exceeds 70%. Analyses of the electrical properties of tunnel junctions with a superconducting Pb counter-electrode indicate that transport through native Al oxide barriers is mostly from direct tunneling, while that through the native CFAS oxide barriers is not. ZnGeAs2 is a semiconductor comprised of only inexpensive and earth-abundant elements. The electronic structure and defect properties are similar in many ways to GaAs. Thus, in theory, efficient solar cells could be made with ZnGeAs2 if similar quality material to that of GaAs could be produced. To understand the thermochemistry and determine the rate limiting steps of ZnGeAs2 thin-film synthesis, the (a) thermal decomposition rate and (b) elemental composition and deposition rate of films were measured. It is concluded that the ZnGeAs2 thin film synthesis is a metastable process with an activation energy of 1.08±0.05 eV for the kinetically-limited decomposition rate and an evaporation coefficient of ~10-3. The thermochemical analysis presented here can be used to predict optimal conditions of ZnGeAs2 physical vapor deposition and thermal processing. Pyrite (FeS2) is another semiconductor that has tremendous potential for use in photovoltaic applications if high quality materials could be made. Here, I present the layer-by-layer growth of single-phase pyrite thin-films on heated substrates using sequential evaporation of Fe under high-vacuum followed by sulfidation at S pressures between 1 mTorr and 1 Torr. High-resolution transmission electron microscopy reveals high-quality, defect-free pyrite grains were produces by this method. It is demonstrated that epitaxial pyrite layer was produced on natural pyrite substrates with this method.

Contributors

Agent

Created

Date Created
  • 2013

Synthesis and in situ characterization of nanostructured and amorphous metallic films

Description

Nanocrystalline (nc) thin films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. Furthermore, the mechanical behavior and microstructure of nc films is intimately related.

Nanocrystalline (nc) thin films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. Furthermore, the mechanical behavior and microstructure of nc films is intimately related. Thus, precise control of the size, aspect ratio and spatial distribution of grains can enable the synthesis of thin films with exceptional mechanical properties. However, conventional bottom-up techniques for synthesizing thin films are incapable of achieving the microstructural control required to explicitly tune their properties. This dissertation focuses on developing a novel technique to synthesize metallic alloy thin films with precisely controlled microstructures and subsequently characterizing their mechanical properties using in situ transmission electron microscopy (TEM). Control over the grain size and distribution was achieved by controlling the recrystallization process of amorphous films by the use of thin crystalline seed layers. The novel technique was used to manipulate the microstructure of structural (TiAl) and functional (NiTi) thin films thereby exhibiting its capability and versatility. Following the synthesis of thin films with tailored microstructures, in situ TEM techniques were employed to probe their mechanical properties. Firstly, a novel technique was developed to measure local atomic level elastic strains in metallic glass thin films during in situ TEM straining. This technique was used to detect structural changes and anelastic deformation in metallic glass thin films. Finally, as the electron beam (e-beam) in TEMs is known to cause radiation damage to specimen, systematic experiments were carried out to quantify the effect of the e-beam on the stress-strain response of nc metals. Experiments conducted on Al and Au films revealed that the e-beam enhances dislocation activity leading to stress relaxation.

Contributors

Agent

Created

Date Created
  • 2017

150211-Thumbnail Image.png

Low-power design of a neuromorphic IC and MICS transceiver

Description

The first part describes Metal Semiconductor Field Effect Transistor (MESFET) based fundamental analog building blocks designed and fabricated in a single poly, 3-layer metal digital CMOS technology utilizing fully depletion

The first part describes Metal Semiconductor Field Effect Transistor (MESFET) based fundamental analog building blocks designed and fabricated in a single poly, 3-layer metal digital CMOS technology utilizing fully depletion mode MESFET devices. DC characteristics were measured by varying the power supply from 2.5V to 5.5V. The measured DC transfer curves of amplifiers show good agreement with the simulated ones with extracted models from the same process. The accuracy of the current mirror showing inverse operation is within ±15% for the current from 0 to 1.5mA with the power supply from 2.5 to 5.5V. The second part presents a low-power image recognition system with a novel MESFET device fabricated on a CMOS substrate. An analog image recognition system with power consumption of 2.4mW/cell and a response time of 6µs is designed, fabricated and characterized. The experimental results verified the accuracy of the extracted SPICE model of SOS MESFETs. The response times of 4µs and 6µs for one by four and one by eight arrays, respectively, are achieved with the line recognition. Each core cell for both arrays consumes only 2.4mW. The last part presents a CMOS low-power transceiver in MICS band is presented. The LNA core has an integrated mixer in a folded configuration. The baseband strip consists of a pseudo differential MOS-C band-pass filter achieving demodulation of 150kHz-offset BFSK signals. The SRO is used in a wakeup RX for the wake-up signal reception. The all digital frequency-locked loop drives a class AB power amplifier in a transmitter. The sensitivity of -85dBm in the wakeup RX is achieved with the power consumption of 320µW and 400µW at the data rates of 100kb/s and 200kb/s from 1.8V, respectively. The sensitivities of -70dBm and -98dBm in the data-link RX are achieved with NF of 40dB and 11dB at the data rate of 100kb/s while consuming only 600µW and 1.5mW at 1.2V and 1.8V, respectively.

Contributors

Agent

Created

Date Created
  • 2011

150291-Thumbnail Image.png

Optical characterization of III nitride semiconductors using cathodoluminescence techniques

Description

Group III-nitride semiconductors have attracted much attention for applications on high brightness light-emitting diodes (LEDs) and laser diodes (LDs) operating in the visible and ultra-violet spectral range using indium gallium

Group III-nitride semiconductors have attracted much attention for applications on high brightness light-emitting diodes (LEDs) and laser diodes (LDs) operating in the visible and ultra-violet spectral range using indium gallium nitride in the active layer. However, the device efficiency in the green to red range is limited by quantum-confined Stark effects resulting from the lattice mismatch between GaN and InGaN. In this dissertation, the optical and micro-structural properties of GaN-based light emitting structures have been analyzed and correlated by utilizing cathodoluminescence and transmission electron microscopy techniques. In the first section, optimization of the design of GaN-based lasers diode structures is presented. The thermal strain present in the GaN underlayer grown on sapphire substrates causes a strain-induced wavelength shift. The insertion of an InGaN waveguide mitigates the mismatch strain at the interface between the InGaN quantum well and the GaN quantum barrier. The second section of the thesis presents a study of the characteristics of thick non-polar m-plane InGaN films and of LED structures containing InGaN quantum wells, which minimize polarization-related electric fields. It is found that in some cases the in-plane piezoelectric fields can still occur due to the existence of misfit dislocations which break the continuity of the film. In the final section, the optical and structural properties of InGaAlN quaternary alloys are analyzed and correlated. The composition of the components of the film is accurately determined by Rutherford backscattering spectroscopy.

Contributors

Agent

Created

Date Created
  • 2011

157671-Thumbnail Image.png

Plasma assisted surface atomic layer substitution for creating Janus 2D materials

Description

More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus

More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when one of the chalcogenides atomic layer is being completely replaced by a layer of different chalcogen element. However, due to lack of accurate processing control at nanometer scales, key for creating a highly crystalline Janus structure has not yet been familiarized. Thus, experimental characterization and implication of these Janus crystals are still in a state of stagnation. This work presents a new advanced methodology that could prove to be highly efficient and effective for selective replacement of top layer atomic sites at room temperature conditions.

This is specifically more focused on proving an easy repeatability for replacement of top atomic layer chalcogenide from a parent structure of already grown TMDC monolayer (via CVD) by a post plasma processing technique. Though this developed technique is not limited to only chalcogen atom replacement but can be extended to any type of surface functionalization requirements.

Basic characterization has been performed on the Janus crystal of SeMoS and SeWS where, creation and characterization of SeWS has been done for the very first time, evidencing a repeatable nature of the developed methodology.

Contributors

Agent

Created

Date Created
  • 2019

154102-Thumbnail Image.png

Study of structural, optical and electrical properties of InAs/InAsSb superlattices using multiple characterization techniques

Description

InAs/InAsSb type-II superlattices (T2SLs) can be considered as potential alternatives for conventional HgCdTe photodetectors due to improved uniformity, lower manufacturing costs with larger substrates, and possibly better device performance. This

InAs/InAsSb type-II superlattices (T2SLs) can be considered as potential alternatives for conventional HgCdTe photodetectors due to improved uniformity, lower manufacturing costs with larger substrates, and possibly better device performance. This dissertation presents a comprehensive study on the structural, optical and electrical properties of InAs/InAsSb T2SLs grown by Molecular Beam Epitaxy.

The effects of different growth conditions on the structural quality were thoroughly investigated. Lattice-matched condition was successfully achieved and material of exceptional quality was demonstrated.

After growth optimization had been achieved, structural defects could hardly be detected, so different characterization techniques, including etch-pit-density (EPD) measurements, cathodoluminescence (CL) imaging and X-ray topography (XRT), were explored, in attempting to gain better knowledge of the sparsely distributed defects. EPD revealed the distribution of dislocation-associated pits across the wafer. Unfortunately, the lack of contrast in images obtained by CL imaging and XRT indicated their inability to provide any quantitative information about defect density in these InAs/InAsSb T2SLs.

The nBn photodetectors based on mid-wave infrared (MWIR) and long-wave infrared (LWIR) InAs/InAsSb T2SLs were fabricated. The significant difference in Ga composition in the barrier layer coupled with different dark current behavior, suggested the possibility of different types of band alignment between the barrier layers and the absorbers. A positive charge density of 1.8 × 1017/cm3 in the barrier of MWIR nBn photodetector, as determined by electron holography, confirmed the presence of a potential well in its valence band, thus identifying type-II alignment. In contrast, the LWIR nBn photodetector was shown to have type-I alignment because no sign of positive charge was detected in its barrier.

Capacitance-voltage measurements were performed to investigate the temperature dependence of carrier densities in a metal-oxide-semiconductor (MOS) structure based on MWIR InAs/InAsSb T2SLs, and a nBn structure based on LWIR InAs/InAsSb T2SLs. No carrier freeze-out was observed in either sample, indicating very shallow donor levels. The decrease in carrier density when temperature increased was attributed to the increased density of holes that had been thermally excited from localized states near the oxide/semiconductor interface in the MOS sample. No deep-level traps were revealed in deep-level transient spectroscopy temperature scans.

Contributors

Agent

Created

Date Created
  • 2015

156600-Thumbnail Image.png

Microstructure of BAlN and InGaN epilayers for optoelectronic applications

Description

In this dissertation, various characterization techniques have been used to investigate many aspects of the properties of III-nitride materials and devices for optoelectronic applications.

The first part of this work

In this dissertation, various characterization techniques have been used to investigate many aspects of the properties of III-nitride materials and devices for optoelectronic applications.

The first part of this work is focused on the evolution of microstructures of BAlN thin films. The films were grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09, while Rutherford backscattering spectrometry (RBS) measures x = 0.06 to 0.16. Transmission electron microscopy indicates the sole presence of the wurtzite crystal structure in the BAlN films, and a tendency towards twin formation and finer microstructure for B/(B+Al) gas-flow ratios greater than 0.15. The RBS data suggest that the incorporation of B is highly efficient, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. It has also located point defects in the films with nanometer resolution. The defects are identified as B and Al interstitials and N vacancies by comparison of the observed energy thresholds with results of density functional theory calculations.

The second part of this work investigates dislocation clusters observed in thick InxGa1-xN films with 0.07 ≤ x ≤ 0.12. The clusters resemble baskets with a higher indium content at their interior. Threading dislocations at the basket boundaries are of the misfit edge type, and their separation is consistent with misfit strain relaxation due the difference in indium content between the baskets and the surrounding matrix. The base of the baskets exhibits no observable misfit dislocations connected to the threading dislocations, and often no net displacements like those due to stacking faults. It is argued that the origin of these threading dislocation arrays is associated with misfit dislocations at the basal plane that dissociate, forming stacking faults. When the stacking faults form simultaneously satisfying the crystal symmetry, the sum of their translation vectors does add up to zero, consistent with our experimental observations.

Contributors

Agent

Created

Date Created
  • 2018

156166-Thumbnail Image.png

In-situ photoemission spectroscopy characterization of electronic states in semiconductor interfaces

Description

The electronic states of semiconductor interfaces have significant importance for semiconductor device performance, especially due to the continuing miniaturization of device technology.

The application of ultra high vacuum (UHV) enables the

The electronic states of semiconductor interfaces have significant importance for semiconductor device performance, especially due to the continuing miniaturization of device technology.

The application of ultra high vacuum (UHV) enables the preparation and characterization of fresh and cleaned interfaces. In a UHV environment, photoemission spectroscopy (PES) provides a non-destructive method to measure the electronic band structure, which is a crucial component of interface properties.

In this dissertation, three semiconductor interfaces were studies to understand different effects on electronic states. The interfaces studied were freshly grown or pre-treated under UHV. Then in-situ PES measurements, including x-ray photoemission spectroscopy (XPS) and ultra-violet photoemission spectroscopy (UPS), were conducted to obtain electronic states information.

First, the CdTe/InSb (100) heterointerface was employed as a model interface for II-VI and III-V heterojunctions. It was suggested that an interface layer formed, which consisted of In-Te bonding. The non-octal bonding between In and Te atoms has donor-like behavior, which was proposed to result in an electron accumulation layer in InSb. A type-I heterointerface was observed. Second, Cu/ZnO interfaces were studied to understand the interface bonding and the role of polarization on ZnO interfaces. It was shown that on O-face ZnO (0001) and PEALD ZnO, copper contacts had ohmic behavior. However, on Zn-face ZnO (0001), a 0.3 eV Schottky barrier height was observed. The lower than expected barrier heights were attributed to oxygen vacancies introduced by Cu-O bonding during interface formation. In addition, it is suggested that the different barrier heights on two sides of ZnO (0001) are caused by the different behavior for the ZnO (0001) faces. Last, a pulse mode deposition method was applied for P-doped diamond growth on (100) diamond surfaces. Pretreatment effects were studied. It is suggested that an O/H plasma treatment or a short period of H-plasma and CH4/H2 plasma could yield a higher growth rate. PES measurements were conducted on H-terminated intrinsic diamond surface and P-doped/intrinsic diamond (100) interfaces. It was suggested that electronic states near the valence band maximum caused Fermi level pinning effects, independent of the diamond doping.

Contributors

Agent

Created

Date Created
  • 2018

154469-Thumbnail Image.png

Characterization of cubic boron nitride interfaces with in situ photoelectron spectroscopy

Description

Cubic boron nitride (c-BN) has potential for electronic applications as an electron emitter and serving as a base material for diodes, transistors, etc. However, there has been limited research on

Cubic boron nitride (c-BN) has potential for electronic applications as an electron emitter and serving as a base material for diodes, transistors, etc. However, there has been limited research on c-BN reported, and many of the electronic properties of c-BN and c-BN interfaces have yet to be reported. This dissertation focused on probing thin film c-BN deposited via plasma enhanced chemical vapor deposition (PECVD) with in situ photoelectron spectroscopy (PES). PES measurements were used to characterize the electronic properties of c-BN films and interfaces with vacuum and diamond. First, the interface between c-BN and vacuum were characterized with ultraviolet PES (UPS). UPS measurements indicated that as-deposited c-BN, H2 plasma treated c-BN, and annealed c-BN post H2 plasma treatment exhibited negative electron affinity surfaces. A dipole model suggested dipoles from H-terminated N surface sites were found to be responsible for the NEA surface. Then, Si was introduced into c-BN films to realize n-type doped c-BN. The valence structure and work function of c-BN:Si films were characterized with XPS and UPS measurements. Measurements were unable to confirm n-type character, and it is concluded that silicon nitride formation was the primary effect for the observations. Finally, XPS measurements were employed to measure the band offsets at the c-BN/diamond interface. Measurements indicated the valence band maximum (VBM) of c-BN was positioned ~0.8 eV above the VBM of diamond.

Contributors

Agent

Created

Date Created
  • 2016