Matching Items (3)
149599-Thumbnail Image.png
Description
The primary focus of this dissertation lies in extremal combinatorics, in particular intersection theorems in finite set theory. A seminal result in the area is the theorem of Erdos, Ko and Rado which finds the upper bound on the size of an intersecting family of subsets of an n-element set

The primary focus of this dissertation lies in extremal combinatorics, in particular intersection theorems in finite set theory. A seminal result in the area is the theorem of Erdos, Ko and Rado which finds the upper bound on the size of an intersecting family of subsets of an n-element set and characterizes the structure of families which attain this upper bound. A major portion of this dissertation focuses on a recent generalization of the Erdos--Ko--Rado theorem which considers intersecting families of independent sets in graphs. An intersection theorem is proved for a large class of graphs, namely chordal graphs which satisfy an additional condition and similar problems are considered for trees, bipartite graphs and other special classes. A similar extension is also formulated for cross-intersecting families and results are proved for chordal graphs and cycles. A well-known generalization of the EKR theorem for k-wise intersecting families due to Frankl is also considered. A stability version of Frankl's theorem is proved, which provides additional structural information about k-wise intersecting families which have size close to the maximum upper bound. A graph-theoretic generalization of Frankl's theorem is also formulated and proved for perfect matching graphs. Finally, a long-standing conjecture of Chvatal regarding structure of maximum intersecting families in hereditary systems is considered. An intersection theorem is proved for hereditary families which have rank 3 using a powerful tool of Erdos and Rado which is called the Sunflower Lemma.
ContributorsKamat, Vikram M (Author) / Hurlbert, Glenn (Thesis advisor) / Colbourn, Charles (Committee member) / Czygrinow, Andrzej (Committee member) / Fishel, Susanna (Committee member) / Kierstead, Henry (Committee member) / Arizona State University (Publisher)
Created2011
154349-Thumbnail Image.png
Description
In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a

In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems - in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) - whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers - machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers.

We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.
ContributorsKamyar, Reza (Author) / Peet, Matthew (Thesis advisor) / Berman, Spring (Committee member) / Rivera, Daniel (Committee member) / Artemiadis, Panagiotis (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2016
168490-Thumbnail Image.png
Description
Modern life is full of challenging optimization problems that we unknowingly attempt to solve. For instance, a common dilemma often encountered is the decision of picking a parking spot while trying to minimize both the distance to the goal destination and time spent searching for parking; one strategy is to

Modern life is full of challenging optimization problems that we unknowingly attempt to solve. For instance, a common dilemma often encountered is the decision of picking a parking spot while trying to minimize both the distance to the goal destination and time spent searching for parking; one strategy is to drive as close as possible to the goal destination but risk a penalty cost if no parking spaces can be found. Optimization problems of this class all have underlying time-varying processes that can be altered by a decision/input to minimize some cost. Such optimization problems are commonly solved by a class of methods called Dynamic Programming (DP) that breaks down a complex optimization problem into a simpler family of sub-problems. In the 1950s Richard Bellman introduced a class of DP methods that broke down Multi-Stage Optimization Problems (MSOP) into a nested sequence of ``tail problems”. Bellman showed that for any MSOP with a cost function that satisfies a condition called additive separability, the solution to the tail problem of the MSOP initialized at time-stage k>0 can be used to solve the tail problem initialized at time-stage k-1. Therefore, by recursively solving each tail problem of the MSOP, a solution to the original MSOP can be found. This dissertation extends Bellman`s theory to a broader class of MSOPs involving non-additively separable costs by introducing a new state augmentation solution method and generalizing the Bellman Equation. This dissertation also considers the analogous continuous-time counterpart to discrete-time MSOPs, called Optimal Control Problems (OCPs). OCPs can be solved by solving a nonlinear Partial Differential Equation (PDE) called the Hamilton-Jacobi-Bellman (HJB) PDE. Unfortunately, it is rarely possible to obtain an analytical solution to the HJB PDE. This dissertation proposes a method for approximately solving the HJB PDE based on Sum-Of-Squares (SOS) programming. This SOS algorithm can be used to synthesize controllers, hence solving the OCP, and also compute outer bounds of reachable sets of dynamical systems. This methodology is then extended to infinite time horizons, by proposing SOS algorithms that yield Lyapunov functions that can approximate regions of attraction and attractor sets of nonlinear dynamical systems arbitrarily well.
ContributorsJones, Morgan (Author) / Peet, Matthew M (Thesis advisor) / Nedich, Angelia (Committee member) / Kawski, Matthias (Committee member) / Mignolet, Marc (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021