Matching Items (4)

155288-Thumbnail Image.png

Bioinspired Anti-Icing Coatings and Spatial Control of Nucleation using Engineered Integral Humidity Sink Effect

Description

Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore

Durable, cost-effective, and environmentally friendly anti-icing methods are desired to reduce the icing hazard in many different industrial areas including transportation systems, power plants, power transmission, as well as offshore oil and gas production. In contrast to traditional passive anti-icing surfaces, this thesis work introduces an anti-icing coating that responds to different icing conditions by releasing an antifreeze liquid. It consists of an outer porous superhydrophobic epidermis and a wick-like underlying dermis that is infused with the antifreeze liquid. This bi-layer coating prevents accumulation of frost, freezing fog, and freezing rain, while conventional anti-icing surfaces typically work only in one of these conditions. The bi-layer coating also delays condensation on the exterior surface at least ten times longer than identical system without antifreeze.

It is demonstrated that the significant delay in condensation onset is due to the integral humidity sink effect posed by the hygroscopic antifreeze liquid infused in the porous structure. This effect significantly alters the water vapor concentration field at the coating surface, which delays nucleation of drops and ice. It was demonstrated that with a proper design of the environmental chamber the size of the region of inhibited condensation and condensation frosting around an isolated pore, as well as periodically spaced pores, filled by propylene glycol can be quantitatively predicted from quasi-steady state water vapor concentration field. Theoretical analysis and experiments revealed that the inhibition of nucleation is governed by only two non-dimensional geometrical parameters: the pore size relative to the unit cell size and the ratio of the unit cell size to the thickness of the boundary layer. It is demonstrated that by switching the size of the pores from millimeters to nanometers, a dramatic depression of the nucleation onset temperature, as well as significantly greater delay in nucleation onset can be achieved.

Contributors

Agent

Created

Date Created
  • 2017

157740-Thumbnail Image.png

Using Droplet Induced Deformations in Polymeric Functional Materials for Heat and Mass Transport Modulation

Description

Droplet-structure interactions play a pivotal role in many engineering applications as droplet-based solutions are evolving. This work explores the physical understanding of these interactions through systematic research leading to improvements

Droplet-structure interactions play a pivotal role in many engineering applications as droplet-based solutions are evolving. This work explores the physical understanding of these interactions through systematic research leading to improvements in thermal management via dropwise condensation (DWC), and breathable protective wearables against chemical aerosols for better thermoregulation.

In DWC, the heat transfer rate can be further increased by increasing the nucleation and by optimally ‘refreshing’ the surface via droplet shedding. Softening of surfaces favor the former while having an adverse effect on the latter. This optimization problem is addressed by investigating how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. The results obtained by combining droplet induced surface deformation with finite element model show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate.

On the other hand, interactions between droplet and polymer leading to polymer swelling can be used to develop breathable wearables for use in chemically harsh environments. Chemical aerosols are hazardous and conventional protective measures include impermeable barriers which limit the thermoregulation. To solve this, a solution is proposed consisting of a superabsorbent polymer developed to selectively absorb these chemicals and closing the pores in the fabric. Starting from understanding and modeling the droplet induced swelling in elastomers, the extent and topological characteristic of swelling is shown to depend on the relative comparison of the polymer and aerosol geometries. Then, this modeling is extended to a customized polymer, through a simplified characterization paradigm. In that, a new method is proposed to measure the swelling parameters of the polymer-solvent pair and develop a validated model for swelling. Through this study, it is shown that for this polymer, the concentration-dependent diffusion coefficient can be measured through gravimetry and Poroelastic Relaxation Indentation, simplifying the characterization effort. Finally, this model is used to design composite fabric. Specifically, using model results, the SAP geometry, base fabric design, method of composition is optimized, and the effectiveness of the composite fabric highlighted in moderate-to-high concentrations over short durations.

Contributors

Agent

Created

Date Created
  • 2019

154214-Thumbnail Image.png

Method for generation of pendant drops through localized condensation for contact angle measurements in conditions deviating from standard environment

Description

Contact angle goniometer is one of the most common tools in surfaces science. Since the introduction of this instrument by Fox and Zisman1 in 1950, dispensing the liquid using

Contact angle goniometer is one of the most common tools in surfaces science. Since the introduction of this instrument by Fox and Zisman1 in 1950, dispensing the liquid using a syringe has generated pendant drops. However, using such approach at conditions significantly deviating from standard pressure and temperature would require an elaborate and costly fluidic system. To this end, this thesis work introduces alternative design of a goniometer capable of contact angle measurement at wide pressure and temperature range. In this design, pendant droplets are not dispensed through a pipette but are generated through localized condensation on a tip of a preferentially cooled small metal wire encapsulated within a thick thermal insulator layer. This thesis work covers experimental study of the relation between the geometry of the condensation-based pendant drop generator geometry and subcooling, and growth rate of drops of representative high (water) and low (pentane) surface tension liquids. Several routes that the generated pendant drops can be used to measure static and dynamic contact angles of the two liquids on common substrates well as nanoengineered superhydrophobic and omniphobic surfaces are demonstrated.

Contributors

Agent

Created

Date Created
  • 2015

149574-Thumbnail Image.png

Modeling mechanisms of water affinity and condensation on Si-based surfaces via experiments and applications

Description

Water affinity and condensation on Si-based surfaces is investigated to address the problem of fogging on silicone intraocular lenses (IOL) during cataract surgery, using Si(100), silica (SiO2) and polydimethylsiloxane (PDMS)

Water affinity and condensation on Si-based surfaces is investigated to address the problem of fogging on silicone intraocular lenses (IOL) during cataract surgery, using Si(100), silica (SiO2) and polydimethylsiloxane (PDMS) silicone (SiOC2H6)n. Condensation is described by two step nucleation and growth where roughness controls heterogeneous nucleation of droplets followed by Ostwald ripening. Wetting on hydrophilic surfaces consists of continuous aqueous films while hydrophobic surfaces exhibit fogging with discrete droplets. Si-based surfaces with wavelength above 200 nm exhibit fogging during condensation. Below 200 nm, surfaces are found to wet during condensation. Water affinity of Si-based surfaces is quantified via the surface free energy (SFE) using Sessile drop contact angle analysis, the Young-Dupré equation, and Van Oss theory. Topography is analyzed using tapping mode atomic force microscopy (TMAFM). Polymer adsorption and ion beam modification of materials (IBMM) can modify surface topography, composition, and SFE, and alter water affinity of the Si-based surfaces we studied. Wet adsorption of hydroxypropyl methylcellulose (HPMC) C32H60O19 with areal densities ranging from 1018 atom/cm2 to 1019 atom/cm2 characterized via Rutherford backscattering spectrometry (RBS), allows for the substrate to adopt the topography of the HPMC film and its hydrophilic properties. The HPMC surface composition maintains a bulk stoichiometric ratio as confirmed by 4.265 MeV 12C(α, α)12C and 3.045 MeV 16O(α, α)16O, and 2.8 MeV He++ elastic recoil detection (ERD) of hydrogen. Both PIXE and RBS methods give comparable areal density results of polymer films on Si(100), silica, and PDMS silicone substrates. The SFE and topography of PDMS silicone polymers used for IOLs can also be modified by IBMM. IBMM of HPMC cellulose occurs during IBA as well. Damage curves and ERD are shown to characterize surface desorption accurately during IBMM so that ion beam damage can be accounted for during analysis of polymer areal density and composition. IBMM of Si(100)-SiO2 ordered interfaces also induces changes of SFE, as ions disorder surface atoms. The SFE converges for all surfaces, hydrophobic and hydrophilic, as ions alter electrochemical properties of the surface via atomic and electronic displacements.

Contributors

Agent

Created

Date Created
  • 2011