Matching Items (2)

149560-Thumbnail Image.png

UnSync: a soft error resilient redundant CMP architecture

Description

Reducing device dimensions, increasing transistor densities, and smaller timing windows, expose the vulnerability of processors to soft errors induced by charge carrying particles. Since these factors are inevitable in the advancement of processor technology, the industry has been forced to

Reducing device dimensions, increasing transistor densities, and smaller timing windows, expose the vulnerability of processors to soft errors induced by charge carrying particles. Since these factors are inevitable in the advancement of processor technology, the industry has been forced to improve reliability on general purpose Chip Multiprocessors (CMPs). With the availability of increased hardware resources, redundancy based techniques are the most promising methods to eradicate soft error failures in CMP systems. This work proposes a novel customizable and redundant CMP architecture (UnSync) that utilizes hardware based detection mechanisms (most of which are readily available in the processor), to reduce overheads during error free executions. In the presence of errors (which are infrequent), the always forward execution enabled recovery mechanism provides for resilience in the system. The inherent nature of UnSync architecture framework supports customization of the redundancy, and thereby provides means to achieve possible performance-reliability trade-offs in many-core systems. This work designs a detailed RTL model of UnSync architecture and performs hardware synthesis to compare the hardware (power/area) overheads incurred. It then compares the same with those of the Reunion technique, a state-of-the-art redundant multi-core architecture. This work also performs cycle-accurate simulations over a wide range of SPEC2000, and MiBench benchmarks to evaluate the performance efficiency achieved over that of the Reunion architecture. Experimental results show that, UnSync architecture reduces power consumption by 34.5% and improves performance by up to 20% with 13.3% less area overhead, when compared to Reunion architecture for the same level of reliability achieved.

Contributors

Agent

Created

Date Created
2011

156791-Thumbnail Image.png

Memory Subsystem Optimization Techniques for Modern High-Performance General-Purpose Processors

Description

General-purpose processors propel the advances and innovations that are the subject of humanity’s many endeavors. Catering to this demand, chip-multiprocessors (CMPs) and general-purpose graphics processing units (GPGPUs) have seen many high-performance innovations in their architectures. With these advances, the memory

General-purpose processors propel the advances and innovations that are the subject of humanity’s many endeavors. Catering to this demand, chip-multiprocessors (CMPs) and general-purpose graphics processing units (GPGPUs) have seen many high-performance innovations in their architectures. With these advances, the memory subsystem has become the performance- and energy-limiting aspect of CMPs and GPGPUs alike. This dissertation identifies and mitigates the key performance and energy-efficiency bottlenecks in the memory subsystem of general-purpose processors via novel, practical, microarchitecture and system-architecture solutions.

Addressing the important Last Level Cache (LLC) management problem in CMPs, I observe that LLC management decisions made in isolation, as in prior proposals, often lead to sub-optimal system performance. I demonstrate that in order to maximize system performance, it is essential to manage the LLCs while being cognizant of its interaction with the system main memory. I propose ReMAP, which reduces the net memory access cost by evicting cache lines that either have no reuse, or have low memory access cost. ReMAP improves the performance of the CMP system by as much as 13%, and by an average of 6.5%.

Rather than the LLC, the L1 data cache has a pronounced impact on GPGPU performance by acting as the bandwidth filter for the rest of the memory subsystem. Prior work has shown that the severely constrained data cache capacity in GPGPUs leads to sub-optimal performance. In this thesis, I propose two novel techniques that address the GPGPU data cache capacity problem. I propose ID-Cache that performs effective cache bypassing and cache line size selection to improve cache capacity utilization. Next, I propose LATTE-CC that considers the GPU’s latency tolerance feature and adaptively compresses the data stored in the data cache, thereby increasing its effective capacity. ID-Cache and LATTE-CC are shown to achieve 71% and 19.2% speedup, respectively, over a wide variety of GPGPU applications.

Complementing the aforementioned microarchitecture techniques, I identify the need for system architecture innovations to sustain performance scalability of GPG- PUs in the face of slowing Moore’s Law. I propose a novel GPU architecture called the Multi-Chip-Module GPU (MCM-GPU) that integrates multiple GPU modules to form a single logical GPU. With intelligent memory subsystem optimizations tailored for MCM-GPUs, it can achieve within 7% of the performance of a similar but hypothetical monolithic die GPU. Taking a step further, I present an in-depth study of the energy-efficiency characteristics of future MCM-GPUs. I demonstrate that the inherent non-uniform memory access side-effects form the key energy-efficiency bottleneck in the future.

In summary, this thesis offers key insights into the performance and energy-efficiency bottlenecks in CMPs and GPGPUs, which can guide future architects towards developing high-performance and energy-efficient general-purpose processors.

Contributors

Agent

Created

Date Created
2018