Matching Items (2)

Filtering by

Clear all filters

152562-Thumbnail Image.png

Development and verification of a library of future fitting algorithms for CMMs

Description

Conformance of a manufactured feature to the applied geometric tolerances is done by analyzing the point cloud that is measured on the feature. To that end, a geometric feature is

Conformance of a manufactured feature to the applied geometric tolerances is done by analyzing the point cloud that is measured on the feature. To that end, a geometric feature is fitted to the point cloud and the results are assessed to see whether the fitted feature lies within the specified tolerance limits or not. Coordinate Measuring Machines (CMMs) use feature fitting algorithms that incorporate least square estimates as a basis for obtaining minimum, maximum, and zone fits. However, a comprehensive set of algorithms addressing the fitting procedure (all datums, targets) for every tolerance class is not available. Therefore, a Library of algorithms is developed to aid the process of feature fitting, and tolerance verification. This paper addresses linear, planar, circular, and cylindrical features only. This set of algorithms described conforms to the international Standards for GD&T.; In order to reduce the number of points to be analyzed, and to identify the possible candidate points for linear, circular and planar features, 2D and 3D convex hulls are used. For minimum, maximum, and Chebyshev cylinders, geometric search algorithms are used. Algorithms are divided into three major categories: least square, unconstrained, and constrained fits. Primary datums require one sided unconstrained fits for their verification. Secondary datums require one sided constrained fits for their verification. For size and other tolerance verifications, we require both unconstrained and constrained fits

Contributors

Agent

Created

Date Created
  • 2014

149542-Thumbnail Image.png

Standardization of CMM algorithms and development of inspection maps for geometric tolerances

Description

The essence of this research is the reconciliation and standardization of feature fitting algorithms used in Coordinate Measuring Machine (CMM) software and the development of Inspection Maps (i-Maps) for representing

The essence of this research is the reconciliation and standardization of feature fitting algorithms used in Coordinate Measuring Machine (CMM) software and the development of Inspection Maps (i-Maps) for representing geometric tolerances in the inspection stage based on these standardized algorithms. The i-Map is a hypothetical point-space that represents the substitute feature evaluated for an actual part in the inspection stage. The first step in this research is to investigate the algorithms used for evaluating substitute features in current CMM software. For this, a survey of feature fitting algorithms available in the literature was performed and then a case study was done to reverse engineer the feature fitting algorithms used in commercial CMM software. The experiments proved that algorithms based on least squares technique are mostly used for GD&T; inspection and this wrong choice of fitting algorithm results in errors and deficiency in the inspection process. Based on the results, a standardization of fitting algorithms is proposed in light of the definition provided in the ASME Y14.5 standard and an interpretation of manual inspection practices. Standardized algorithms for evaluating substitute features from CMM data, consistent with the ASME Y14.5 standard and manual inspection practices for each tolerance type applicable to planar features are developed. Second, these standardized algorithms developed for substitute feature fitting are then used to develop i-Maps for size, orientation and flatness tolerances that apply to their respective feature types. Third, a methodology for Statistical Process Control (SPC) using the I-Maps is proposed by direct fitting of i-Maps into the parent T-Maps. Different methods of computing i-Maps, namely, finding mean, computing the convex hull and principal component analysis are explored. The control limits for the process are derived from inspection samples and a framework for statistical control of the process is developed. This also includes computation of basic SPC and process capability metrics.

Contributors

Agent

Created

Date Created
  • 2011