Matching Items (2)
Filtering by

Clear all filters

153035-Thumbnail Image.png
Description
Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time

Dimensional Metrology is the branch of science that determines length, angular, and geometric relationships within manufactured parts and compares them with required tolerances. The measurements can be made using either manual methods or sampled coordinate metrology (Coordinate measuring machines). Manual measurement methods have been in practice for a long time and are well accepted in the industry, but are slow for the present day manufacturing. On the other hand CMMs are relatively fast, but these methods are not well established yet. The major problem that needs to be addressed is the type of feature fitting algorithm used for evaluating tolerances. In a CMM the use of different feature fitting algorithms on a feature gives different values, and there is no standard that describes the type of feature fitting algorithm to be used for a specific tolerance. Our research is focused on identifying the feature fitting algorithm that is best used for each type of tolerance. Each algorithm is identified as the one to best represent the interpretation of geometric control as defined by the ASME Y14.5 standard and on the manual methods used for the measurement of a specific tolerance type. Using these algorithms normative procedures for CMMs are proposed for verifying tolerances. The proposed normative procedures are implemented as software. Then the procedures are verified by comparing the results from software with that of manual measurements.

To aid this research a library of feature fitting algorithms is developed in parallel. The library consists of least squares, Chebyshev and one sided fits applied on the features of line, plane, circle and cylinder. The proposed normative procedures are useful for evaluating tolerances in CMMs. The results evaluated will be in accordance to the standard. The ambiguity in choosing the algorithms is prevented. The software developed can be used in quality control for inspection purposes.
ContributorsVemulapalli, Prabath (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Takahashi, Timothy (Committee member) / Arizona State University (Publisher)
Created2014
Description
The objective of this study is to understand how to integrate conical spike external compression inlets with high bypass turbofan engines for application on future supersonic airliners. Many performance problems arise when inlets are matched with engines as inlets come with a plethora of limitations and losses that greatly affect

The objective of this study is to understand how to integrate conical spike external compression inlets with high bypass turbofan engines for application on future supersonic airliners. Many performance problems arise when inlets are matched with engines as inlets come with a plethora of limitations and losses that greatly affect an engine’s ability to operate. These limitations and losses include drag due to inlet spillage, bleed ducts, and bypass doors, as well as the maximum and minimum values of mass flow ratio at each Mach number that define when an engine can no longer function. A collection of tools was developed that allow one to calculate the raw propulsion data of an engine, match the propulsion data with an inlet, calculate the aerodynamic data of an aircraft, and combine the propulsion and aerodynamic data to calculate the installed performance of the entire propulsion system. Several trade studies were performed that tested how changing specific design parameters of the engine affected propulsion performance. These engine trade studies proved that high bypass turbofan engines could be developed with external compression inlets and retain effective supersonic performance. Several engines of efficient fuel consumption and differing bypass ratios were developed through the engine trade studies and used with the aerodynamic data of the Concorde to test the aircraft performance of a supersonic airliner using these engines. It was found that none of the engines that were tested came close to matching the supersonic performance that the Concorde could achieve with its own turbojet engines. It is possible to speculate from the results several different reasons why these turbofan engines were unable to function effectively with the Concorde. These speculations show that more tests and trade studies need to be performed in order to determine if high bypass turbofan engines can be developed for effective usage with supersonic airliners in any possible way.
ContributorsCleary, Spencer (Author) / Takahashi, Timothy (Thesis advisor) / White, Daniel (Committee member) / Dahm, Werner (Committee member) / Arizona State University (Publisher)
Created2018