Matching Items (3)
154828-Thumbnail Image.png
Description
Improved knowledge connecting the chemistry, structure, and properties of polymers is necessary to develop advanced materials in a materials-by-design approach. Molecular dynamics (MD) simulations can provide tremendous insight into how the fine details of chemistry, molecular architecture, and microstructure affect many physical properties; however, they face well-known restrictions in their

Improved knowledge connecting the chemistry, structure, and properties of polymers is necessary to develop advanced materials in a materials-by-design approach. Molecular dynamics (MD) simulations can provide tremendous insight into how the fine details of chemistry, molecular architecture, and microstructure affect many physical properties; however, they face well-known restrictions in their applicable temporal and spatial scales. These limitations have motivated the development of computationally-efficient, coarse-grained methods to investigate how microstructural details affect thermophysical properties. In this dissertation, I summarize my research work in structure-based coarse-graining methods to establish the link between molecular-scale structure and macroscopic properties of two different polymers. Systematically coarse-grained models were developed to study the viscoelastic stress response of polyurea, a copolymer that segregates into rigid and viscous phases, at time scales characteristic of blast and impact loading. With the application of appropriate scaling parameters, the coarse-grained models can predict viscoelastic properties with a speed up of 5-6 orders of magnitude relative to the atomistic MD models. Coarse-grained models of polyethylene were also created to investigate the thermomechanical material response under shock loading. As structure-based coarse-grained methods are generally not transferable to states different from which they were calibrated at, their applicability for modeling non-equilibrium processes such as shock and impact is highly limited. To address this problem, a new model is developed that incorporates many-body interactions and is calibrated across a range of different thermodynamic states using a least square minimization scheme. The new model is validated by comparing shock Hugoniot properties with atomistic and experimental data for polyethylene. Lastly, a high fidelity coarse-grained model of polyethylene was constructed that reproduces the joint-probability distributions of structural variables such as the distributions of bond lengths and bond angles between sequential coarse-grained sites along polymer chains. This new model accurately represents the structure of both the amorphous and crystal phases of polyethylene and enabling investigation of how polymer processing such as cold-drawing and bulk crystallization affect material structure at significantly larger time and length scales than traditional molecular simulations.
ContributorsAgrawal, Vipin (Author) / Oswald, Jay (Thesis advisor) / Peralta, Pedro (Committee member) / Chamberlin, Ralph (Committee member) / Solanki, Kiran (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2016
155121-Thumbnail Image.png
Description
Finite element simulations modeling the hydrodynamic impact loads subjected to an elastomeric coating were performed to develop an understanding of the performance and failure mechanisms of protective coatings for cavitating environments.

In this work, two major accomplishments were achieved: 1) scaling laws were developed from hydrodynamic principles and numerical

Finite element simulations modeling the hydrodynamic impact loads subjected to an elastomeric coating were performed to develop an understanding of the performance and failure mechanisms of protective coatings for cavitating environments.

In this work, two major accomplishments were achieved: 1) scaling laws were developed from hydrodynamic principles and numerical simulations to allow conversion of measured distributions of pressure peaks in a cavitating flow to distributions of microscopic impact loadings modeling individual bubble collapse events, and 2) a finite strain, thermo-mechanical material model for polyurea-based elastomers was developed using a logarithmic rate formulation and implemented into an explicit finite element code.

Combining the distribution of microscopic impact loads and finite element modeling, a semi-quantitative predictive framework is created to calculate the energy dissipation within the coating which can further the understanding of temperature induced coating failures.

The influence of coating thickness and elastomer rheology on the dissipation of impact energies experienced in cavitating flows has also been explored.

The logarithmic formulation has many desired features for the polyurea constitutive model, such as objectivity, integrability, and additive decomposition compatibility.

A review and discussion on the kinematics in large deformation, including a comparison between Lagrangian and Eulerian descriptions, are presented to explain the issues in building rate-dependent constitutive models in finite strains.

When comparing the logarithmic rate with other conventional rates in test examples, the logarithmic rate shows a better conservation of objectivity and integrability.

The modeling framework was validated by comparing predictions against temperatures measured within coatings subjected to a cavitating jet.

Both the experiments and models show that the temperatures generated, even under mild flow conditions, raise the coating temperature by a significant amount, suggesting that the failure of these coatings under more aggressive flows is thermally induced.

The models show that thin polyurea coatings synthesized with shorter molecular weight soft segments dissipate significantly less energy per impact and conduct heat more efficiently.

This work represents an important step toward understanding thermally induced failure in elastomers subjected to cavitating flows, which provides a foundation for design and optimization of coatings with enhanced erosion resistance.
ContributorsLiao, Xiao (Author) / Oswald, Jay (Thesis advisor) / Liu, Yongming (Committee member) / Jiang, Hanqing (Committee member) / Rajan, Subramaniam D. (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2016
149540-Thumbnail Image.png
Description
This dissertation features a compilation of studies concerning the biophysics of multicellular systems. I explore eukaryotic systems across length scales of the cell cytoskeleton to macroscopic scales of tissues. I begin with a general overview of the natural phenomena of life and a philosophy of investigating developmental systems in biology.

This dissertation features a compilation of studies concerning the biophysics of multicellular systems. I explore eukaryotic systems across length scales of the cell cytoskeleton to macroscopic scales of tissues. I begin with a general overview of the natural phenomena of life and a philosophy of investigating developmental systems in biology. The topics covered throughout this dissertation require a background in eukaryotic cell physiology, viscoelasticity, and processes of embryonic tissue morphogenesis. Following a brief background on these topics, I present an overview of the Subcellular Element Model (ScEM). This is a modeling framework which allows one to compute the dynamics of large numbers of three-dimensional deformable cells in multi-cellular systems. A primary focus of the work presented here is implementing cellular function within the framework of this model to produce biologically meaningful phenotypes. In this way, it is hoped that this modeling may inform biological understanding of the underlying mechanisms which manifest into a given cell or tissue scale phenomenon. Thus, all theoretical investigations presented here are motivated by and compared to experimental observations. With the ScEM modeling framework I first explore the passive properties of viscoelastic networks. Then as a direct extension of this work, I consider the active properties of cells, which result in biological behavior and the emergence of non-trivial biological phenotypes in cells and tissues. I then explore the possible role of chemotaxis as a mechanism of orchestrating large scale tissue morphogenesis in the early embryonic stages of amniotes. Finally I discuss the cross-sectional topology of proliferating epithelial tissues. I show how the Subcellular Element Model (ScEM) is a phenomenological model of finite elements whose interactions can be calibrated to describe the viscoelastic properties of biological materials. I further show that implementing mechanisms of cytoskeletal remodeling yields cellular and tissue phenotypes that are more and more biologically realistic. Particularly I show that structural remodeling of the cell cytoskeleton is crucial for large scale cell deformations. I provide supporting evidence that a chemotactic dipole mechanism is able to orchestrate the type of large scale collective cell movement observed in the chick epiblast during gastrulation and primitive streak formation. Finally, I show that cell neighbor histograms provide a potentially unique signature measurement of tissue topology; such measurements may find use in identifying cellular level phenotypes from a single snapshot micrograph.
ContributorsSandersius, Sebastian Ambrose (Author) / Newman, Timothy J (Thesis advisor) / Rez, Peter (Committee member) / Ros, Robert (Committee member) / Sankey, Otto F. (Committee member) / Tsen, Kong-Thon (Committee member) / Arizona State University (Publisher)
Created2011