Matching Items (31)

152254-Thumbnail Image.png

FE simulation based friction coefficient factors for metal forming

Description

The friction condition is an important factor in controlling the compressing process in metalforming. The friction calibration maps (FCM) are widely used in estimating friction factors between the workpiece and

The friction condition is an important factor in controlling the compressing process in metalforming. The friction calibration maps (FCM) are widely used in estimating friction factors between the workpiece and die. However, in standard FEA, the friction condition is defined by friction coefficient factor (µ), while the FCM is used to a constant shear friction factors (m) to describe the friction condition. The purpose of this research is to find a method to convert the m factor to u factor, so that FEA can be used to simulate ring tests with µ. The research is carried out with FEA and Design of Experiment (DOE). FEA is used to simulate the ring compression test. A 2D quarter model is adopted as geometry model. A bilinear material model is used in nonlinear FEA. After the model is established, validation tests are conducted via the influence of Poisson's ratio on the ring compression test. It is shown that the established FEA model is valid especially if the Poisson's ratio is close to 0.5 in the setting of FEA. Material folding phenomena is present in this model, and µ factors are applied at all surfaces of the ring respectively. It is also found that the reduction ratio of the ring and the slopes of the FCM can be used to describe the deformation of the ring specimen. With the baseline FEA model, some formulas between the deformation parameters, material mechanical properties and µ factors are generated through the statistical analysis to the simulating results of the ring compression test. A method to substitute the m factor with µ factors for particular material by selecting and applying the µ factor in time sequence is found based on these formulas. By converting the m factor into µ factor, the cold forging can be simulated.

Contributors

Agent

Created

Date Created
  • 2013

Simulation models for programmable metallization cells

Description

Advances in software and applications continue to demand advances in memory. The ideal memory would be non-volatile and have maximal capacity, speed, retention time, endurance, and radiation hardness while also

Advances in software and applications continue to demand advances in memory. The ideal memory would be non-volatile and have maximal capacity, speed, retention time, endurance, and radiation hardness while also having minimal physical size, energy usage, and cost. The programmable metallization cell (PMC) is an emerging memory technology that is likely to surpass flash memory in all the listed ideal memory characteristics. A comprehensive physics-based model is needed to fully understand PMC operation and aid in design optimization. With the intent of advancing the PMC modeling effort, this thesis presents two simulation models for the PMC. The first model is a finite element model based on Silvaco Atlas finite element analysis software. Limitations of the software are identified that make this model inconsistent with the operating mechanism of the PMC. The second model is a physics-based numerical model developed for the PMC. This model is successful in matching data measured from a chalcogenide glass PMC designed and manufactured at ASU. Matched operating characteristics observable in the current and resistance vs. voltage data include the OFF/ON resistances and write/erase and electrodeposition voltage thresholds. Multilevel programming is also explained and demonstrated with the numerical model. The numerical model has already proven useful by revealing some information presented about the operation and characteristics of the PMC.

Contributors

Agent

Created

Date Created
  • 2013

152841-Thumbnail Image.png

Non-local finite element model for rigid origami

Description

Origami is an art transforming a flat sheet of paper into a sculpture. Among various types of origami, the focus is on a particular class called the `Rigid Origami' ("RO").

Origami is an art transforming a flat sheet of paper into a sculpture. Among various types of origami, the focus is on a particular class called the `Rigid Origami' ("RO"). A Rigid Origami, unlike other forms, is not intended to be folded into fancy shapes. On the contrary, an RO has a simple and a geometrically well-defined crease pattern and does not have curved/smudged faces. The folds can be carried out by a continuous motion in which, at each step, each face of the origami is completely flat. As a result, these planar faces experience very minimal strain due to loading. This property allows it to be used to fold surfaces made of rigid materials. Tapping into the geometrical properties of RO will open a new field of research with great practical utility. Analyzing each new RO pattern will require generating numerous prototypes; this is practically impossible to do, as it consumes a lot of time and material. The advantages of Finite Element Analysis
umerical modeling become very clear in this scenario. A new design concept may be modeled to determine its real world behavior under various load environments and may, therefore, be refined prior to the creation of drawings, when changes are inexpensive. Since an RO undergoes a non-local deformation when subjected to a disturbance, the usage of conventional FEA will not produce accurate results. A non-local element model was developed which can be used in conjunction with the finite element package ABAQUS, via its user-defined element (UEL). This model was tested on two RO patterns, namely Miura-Ori and Ron Resch, by carrying out basic simulations. There are many other interesting origami patterns, exhibiting different meta-material properties, yet to be explored. This Finite Element Approach equips researchers with necessary tools to study those options in great detail.

Contributors

Agent

Created

Date Created
  • 2014

153979-Thumbnail Image.png

Numerical modelling of galvanic structural joints subjected to combined environmental and mechanical loading

Description

Dissimilar metal joints such as aluminum-steel joints are extensively used in automobile, naval and aerospace applications and these are subjected to corrosive environmental and mechanical loading resulting in eventual failure

Dissimilar metal joints such as aluminum-steel joints are extensively used in automobile, naval and aerospace applications and these are subjected to corrosive environmental and mechanical loading resulting in eventual failure of the structural joints. In the case of aluminum alloys under aggressive environment, the damage accumulation is predominantly due to corrosion and is accelerated in presence of other metals. During recent years several approaches have been employed to develop models to assess the metal removal rate in the case of galvanic corrosion. Some of these models are based on empirical methods such as regression analysis while others are based on quantification of the ongoing electrochemical processes. Here, a numerical model for solving the Nernst- Planck equation, which captures the electrochemical process, is implemented to predict the galvanic current distribution and, hence, the corrosion rate of a galvanic couple. An experimentally validated numerical model for an AE44 (Magnesium alloy) and mild steel galvanic couple, available in the literature, is extended to simulate the mechano- electrochemical process in order to study the effect of mechanical loading on the galvanic current density distribution and corrosion rate in AE44-mild steel galvanic couple through a multiphysics field coupling technique in COMSOL Multiphysics®. The model is capable of tracking moving boundariesy of the corroding constituent of the couple by employing Arbitrary Langrangian Eulerian (ALE) method.Results show that, when an anode is under a purely elastic deformation, there is no apparent effect of mechanical loading on the electrochemical galvanic process. However, when the applied tensile load is sufficient to cause a plastic deformation, the local galvanic corrosion activity at the vicinity of the interface is increased remarkably. The effect of other factors, such as electrode area ratios, electrical conductivity of the electrolyte and depth of the electrolyte, are studied. It is observed that the conductivity of the electrolyte significantly influences the surface profile of the anode, especially near the junction. Although variations in electrolyte depth for a given galvanic couple noticeably affect the overall corrosion, the change in the localized corrosion rate at the interface is minimal. Finally, we use the model to predict the current density distribution, rate of corrosion and depth profile of aluminum alloy 7075-stainless steel 316 galvanic joints, which are extensively used in maritime structures.

Contributors

Agent

Created

Date Created
  • 2015

154126-Thumbnail Image.png

Finite element analysis of micro-cantilever beam experiments in UO2

Description

Uranium Dioxide (UO2) is a significant nuclear fission fuel, which is widely used

in nuclear reactors. Understanding the influence of microstructure on thermo-mechanical behavior of UO2 is extremely important to predict

Uranium Dioxide (UO2) is a significant nuclear fission fuel, which is widely used

in nuclear reactors. Understanding the influence of microstructure on thermo-mechanical behavior of UO2 is extremely important to predict its performance. In particular, evaluating mechanical properties, such as elasticity, plasticity and creep at sub-grain length scales is key to developing this understanding as well as building multi-scale models of fuel behavior with predicting capabilities. In this work, modeling techniques were developed to study effects of microstructure on Young’s modulus, which was selected as a key representative property that affects overall mechanical behavior, using experimental data obtained from micro-cantilever bending testing as benchmarks. Beam theory was firstly introduced to calculate Young's modulus of UO2 from the experimental data and then three-dimensional finite element models of the micro-cantilever beams were constructed to simulate bending tests in UO2 at room temperature. The influence of the pore distribution was studied to explain the discrepancy between predicted values and experimental results. Results indicate that results of tests are significantly affected by porosity given that both pore size and spacing in the samples are of the order of the micro-beam dimensions. Microstructure reconstruction was conducted with images collected from three-dimensional serial sectioning using focused ion beam (FIB) and electron backscattering diffraction (EBSD) and pore clusters were placed at different locations along the length of the beam. Results indicate that the presence of pore clusters close to the substrate, i.e., the clamp of the micro-cantilever beam, has the strongest effect on load-deflection behavior, leading to a reduction of stiffness that is the largest for any location of the pore cluster. Furthermore, it was also found from both numerical and i

analytical models that pore clusters located towards the middle of the span and close to the end of the beam only have a very small effect on the load-deflection behavior, and it is concluded that better estimates of Young's modulus can be obtained from micro- cantilever experiments by using microstructurally explicit models that account for porosity in about one half of the beam length close to the clamp. This, in turn, provides an avenue to simplify micro-scale experiments and their analysis.

Contributors

Agent

Created

Date Created
  • 2015

154124-Thumbnail Image.png

Efficient extended finite element algorithms for strongly and weakly discontinuous entities with complex internal geometries

Description

The objective of this research is to develop robust, accurate, and adaptive algorithms in the framework of the extended finite element method (XFEM) for fracture analysis of highly heterogeneous materials

The objective of this research is to develop robust, accurate, and adaptive algorithms in the framework of the extended finite element method (XFEM) for fracture analysis of highly heterogeneous materials with complex internal geometries. A key contribution of this work is the creation of novel methods designed to automate the incorporation of high-resolution data, e.g. from X-ray tomography, that can be used to better interpret the enormous volume of data generated in modern in-situ experimental testing. Thus new algorithms were developed for automating analysis of complex microstructures characterized by segmented tomographic images.

A centrality-based geometry segmentation algorithm was developed to accurately identify discrete inclusions and particles in composite materials where limitations in imaging resolution leads to spurious connections between particles in close contact.To allow for this algorithm to successfully segment geometry independently of particle size and shape, a relative centrality metric was defined to allow for a threshold centrality criterion for removal of voxels that spuriously connect distinct geometries.

To automate incorporation of microstructural information from high-resolution images, two methods were developed that initialize signed distance fields on adaptively-refined finite element meshes. The first method utilizes a level set evolution equation that is directly solved on the finite element mesh through Galerkins method. The evolution equation is formulated to produce a signed distance field that matches geometry defined by a set of voxels segmented from tomographic images. The method achieves optimal convergence for the order of elements used. In a second approach, the fast marching method is employed to initialize a distance field on a uniform grid which is then projected by least squares onto a finite element mesh. This latter approach is shown to be superior in speed and accuracy.

Lastly, extended finite element method simulations are performed for the analysis of particle fracture in metal matrix composites with realistic particle geometries initialized from X-ray tomographic data. In the simulations, particles fracture probabilistically through a Weibull strength distribution. The model is verified through comparisons with the experimentally-measured stress-strain response of the material as well as analysis of the fracture. Further, simulations are then performed to analyze the effect of mesh sensitivity, the effect of fracture of particles on their neighbors, and the role of a particles shape on its fracture probability.

Contributors

Agent

Created

Date Created
  • 2015

155020-Thumbnail Image.png

A generalized orthotropic elasto-plastic material model for impact analysis

Description

Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation

Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components – deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure. The developed theory has been implemented in a commercial explicit finite element analysis code, LS-DYNA®, as MAT213. Several verification and validation tests using a commonly available carbon-fiber composite, Toyobo’s T800/F3900, have been carried and the results show that the theory and implementation are efficient, robust and accurate.

Contributors

Agent

Created

Date Created
  • 2016

150419-Thumbnail Image.png

Finite element modeling of the effect of reflow porosity on the mechanical behavior of Pb-free solder joints

Description

Pb-free solders are used as interconnects in various levels of micro-electronic packaging. Reliability of these interconnects is very critical for the performance of the package. One of the main factors

Pb-free solders are used as interconnects in various levels of micro-electronic packaging. Reliability of these interconnects is very critical for the performance of the package. One of the main factors affecting the reliability of solder joints is the presence of porosity which is introduced during processing of the joints. In this thesis, the effect of such porosity on the deformation behavior and eventual failure of the joints is studied using Finite Element (FE) modeling technique. A 3D model obtained by reconstruction of x-ray tomographic image data is used as input for FE analysis to simulate shear deformation and eventual failure of the joint using ductile damage model. The modeling was done in ABAQUS (v 6.10). The FE model predictions are validated with experimental results by comparing the deformation of the pores and the crack path as predicted by the model with the experimentally observed deformation and failure pattern. To understand the influence of size, shape, and distribution of pores on the mechanical behavior of the joint four different solder joints with varying degrees of porosity are modeled using the validated FE model. The validation technique mentioned above enables comparison of the simulated and actual deformation only. A more robust way of validating the FE model would be to compare the strain distribution in the joint as predicted by the model and as observed experimentally. In this study, to enable visualization of the experimental strain for the 3D microstructure obtained from tomography, a three dimensional digital image correlation (3D DIC) code has been implemented in MATLAB (MathWorks Inc). This developed 3D DIC code can be used as another tool to verify the numerical model predictions. The capability of the developed code in measuring local displacement and strain is demonstrated by considering a test case.

Contributors

Agent

Created

Date Created
  • 2011

151345-Thumbnail Image.png

Improvements in numerical modeling methodology of dry woven fabrics for aircraft engine containment systems

Description

Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The

Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The development of a predictive model for fan blade containment would provide great benefit to engine manufactures in shortened development cycle time, less risk in certification and fewer dollars lost to redesign/recertification cycles. A mechanistic user-defined material model subroutine has been developed at Arizona State University (ASU) that captures the behavioral response of these fabrics, namely Kevlar® 49, under ballistic loading. Previously developed finite element models used to validate the consistency of this material model neglected the effects of the physical constraints imposed on the test setup during ballistic testing performed at NASA Glenn Research Center (NASA GRC). Part of this research was to explore the effects of these boundary conditions on the results of the numerical simulations. These effects were found to be negligible in most instances. Other material models for woven fabrics are available in the LS-DYNA finite element code. One of these models, MAT234: MAT_VISCOELASTIC_LOOSE_FABRIC (Ivanov & Tabiei, 2004) was studied and implemented in the finite element simulations of ballistic testing associated with the FAA ASU research. The results from these models are compared to results obtained from the ASU UMAT as part of this research. The results indicate an underestimation in the energy absorption characteristics of the Kevlar 49 fabric containment systems. More investigation needs to be performed in the implementation of MAT234 for Kevlar 49 fabric. Static penetrator testing of Kevlar® 49 fabric was performed at ASU in conjunction with this research. These experiments are designed to mimic the type of loading experienced during fan blade out events. The resulting experimental strains were measured using a non-contact optical strain measurement system (ARAMIS).

Contributors

Agent

Created

Date Created
  • 2012

151437-Thumbnail Image.png

A finite element-based framework for understanding the energy performance of concrete elements incorporating phase change materials

Description

Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials

Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a finite element-based framework that is used to study the thermal performance of structural precast concrete wall elements with and without a layer of phase change material. The simulation platform developed can be implemented for a wide variety of input parameters. In this study, two different locations in the continental United States, representing different ambient temperature conditions (corresponding to hot, cold and typical days of the year) are studied. Two different types of concrete - normal weight and lightweight, different PCM types, gypsum wallboard's with varying PCM percentages and different PCM layer thicknesses are also considered with an aim of understanding the energy flow across the wall member. Effect of changing PCM location and prolonged thermal loading are also studied. The temperature of the inside face of the wall and energy flow through the inside face of the wall, which determines the indoor HVAC energy consumption are used as the defining parameters. An ad-hoc optimization scheme is also implemented where the PCM thickness is fixed but its location and properties are varied. Numerical results show that energy savings are possible with small changes in baseline values, facilitating appropriate material design for desired characteristics.

Contributors

Agent

Created

Date Created
  • 2012