Matching Items (3)

149806-Thumbnail Image.png

The "",field_main_title:"history and nature of science" in the era of standards-based reform

Description

The goal of science education in the United States is promoting scientific literacy for all students. The goal necessitates understanding the nature of science-what science is as a body of knowledge, explanatory tool, and human enterprise. The history of science

The goal of science education in the United States is promoting scientific literacy for all students. The goal necessitates understanding the nature of science-what science is as a body of knowledge, explanatory tool, and human enterprise. The history of science is one of the most long-standing pedagogical methods of getting at the nature of science. But scientific literacy also encompasses education in scientific inquiry, and in the relationships among science, technology, and society (STS), as well as fact and theory-based subject-matter content. Since the beginning of the standards-based reform movement (circa 1983) many attempts have been made to codify the components of scientific literacy. National level voluntary standards have lead to state standards. Under No Child Left Behind, those state standards have become integral parts of the educational system. Standards are political in nature, yet play the role of intended curriculum. I examine one thread of scientific literacy, the history and nature of science, from its beginnings in science education through the political perturbations of the last thirty years. This examination of "the history and nature of science" through the history of standards-based reform sheds light on our changing conception of scientific literacy.

Contributors

Agent

Created

Date Created
2011

149522-Thumbnail Image.png

Student conceptions of the nature of science

Description

ABSTRACT Research has shown that students from elementary school to college have major misconceptions about the nature of science. While an appropriate understanding of the nature of science has been an objective of science education for a century, researchers using

ABSTRACT Research has shown that students from elementary school to college have major misconceptions about the nature of science. While an appropriate understanding of the nature of science has been an objective of science education for a century, researchers using a variety of instruments, continue to document students' inadequate conceptions of what science is and how it operates as an enterprise. Current research involves methods to improve student understanding of the nature of science. Students often misunderstand the creative, subjective, empirical, and tentative nature of science. They do not realize the relationship between laws and theories, nor do they understand that science does not follow a prescribed method. Many do not appreciate the influence culture, society, and politics; nor do they have an accurate understanding of the types of questions addressed by science. This study looks at student understanding of key nature of science (NOS) concepts in order to examine the impact of implementing activities intended to help students better understand the process of science and to see if discussion of key NOS concepts following those activities will result in greater gains in NOS understanding. One class received an "activities only" treatment, while the other participated in the same activities followed by explicit discussion of key NOS themes relating to the activity. The interventions were implemented for one school year in two high school anatomy and physiology courses composed of juniors and seniors. Student views of the nature of science were measured using the Views of the Nature of Science - Form C (VNOS-C). Students in both classes demonstrated significant gains in NOS understanding. However, contrary to current research, the addition of explicit discussion did not result in significantly greater gains in NOS understanding. This suggests that perhaps students in higher-level science classes can draw the correlations between NOS related activities and important aspects of "real" science. Or perhaps that a curriculum with a varied approach my expose students to more aspects of science thus improving their NOS understanding.

Contributors

Agent

Created

Date Created
2010

157657-Thumbnail Image.png

Computational interdisciplinarity: a study in the history of science

Description

This dissertation focuses on creating a pluralistic approach to understanding and measuring interdisciplinarity at various scales to further the study of the evolution of knowledge and innovation. Interdisciplinarity is considered an important research component and is closely linked to

This dissertation focuses on creating a pluralistic approach to understanding and measuring interdisciplinarity at various scales to further the study of the evolution of knowledge and innovation. Interdisciplinarity is considered an important research component and is closely linked to higher rates of innovation. If the goal is to create more innovative research, we must understand how interdisciplinarity operates.

I begin by examining interdisciplinarity with a small scope, the research university. This study uses metadata to create co-authorship networks and examine how a change in university policies to increase interdisciplinarity can be successful. The New American University Initiative (NAUI) at Arizona State University (ASU) set forth the goal of making ASU a world hub for interdisciplinary research. This kind of interdisciplinarity is produced from a deliberate, engineered, reorganization of the individuals within the university and the knowledge they contain. By using a set of social network analysis measurements, I created an algorithm to measure the changes to the co-authorship networks that resulted from increased university support for interdisciplinary research.

The second case study increases the scope of interdisciplinarity from individual universities to a single scientific discourse, the Anthropocene. The idea of the Anthropocene began as an idea about the need for a new geological epoch and underwent unsupervised interdisciplinary expansion due to climate change integrating itself into the core of the discourse. In contrast to the NAUI which was specifically engineered to increase interdisciplinarity, the I use keyword co-occurrence networks to measure how the Anthropocene discourse increases its interdisciplinarity through unsupervised expansion after climate change becomes a core keyword within the network and behaves as an anchor point for new disciplines to connect and join the discourse.

The scope of interdisciplinarity increases again with the final case study about the field of evolutionary medicine. Evolutionary medicine is a case of engineered interdisciplinary integration between evolutionary biology and medicine. The primary goal of evolutionary medicine is to better understand "why we get sick" through the lens of evolutionary biology. This makes it an excellent candidate to understand large-scale interdisciplinarity. I show through multiple type of networks and metadata analyses that evolutionary medicine successfully integrates the concepts of evolutionary biology into medicine.

By increasing our knowledge of interdisciplinarity at various scales and how it behaves in different initial conditions, we are better able to understand the elusive nature of innovation. Interdisciplinary can mean different things depending on how its defined. I show that a pluralistic approach to defining and measuring interdisciplinarity is not only appropriate but necessary if our goal is to increase interdisciplinarity, the frequency of innovations, and our understanding of the evolution of knowledge.

Contributors

Agent

Created

Date Created
2019