Matching Items (5)
Filtering by

Clear all filters

151685-Thumbnail Image.png
Description
A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a

A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a viable approach to obtaining these short wavelengths. To assess the feasibility of such a system, an effective medium model of a chain of Noble metal plasmonic nanospheres is developed, leading to a straightforward calculation of the waveguiding properties. Evaluation of other models for such structures that have appeared in the literature, including an eigenvalue problem nearest neighbor approximation, a multi- neighbor approximation with retardation, and a method-of-moments method for a finite chain, show conflicting expectations of such a structure. In particular, recent publications suggest the possibility of regions of invalidity for eigenvalue problem solutions that are considered far below the onset of guidance, and for solutions that assume the loss is low enough to justify perturbation approximations. Even the published method-of-moments approach suffers from an unjustified assumption in the original interpretation, leading to overly optimistic estimations of the attenuation of the plasmon guided wave. In this work it is shown that the method of moments approach solution was dominated by the radiation from the source dipole, and not the waveguiding behavior claimed. If this dipolar radiation is removed the remaining fields ought to contain the desired guided wave information. Using a Prony's-method-based algorithm the dispersion properties of the chain of spheres are assessed at two frequencies, and shown to be dramatically different from the optimistic expectations in much of the literature. A reliable alternative to these models is to replace the chain of spheres with an effective medium model, thus mapping the chain problem into the well-known problem of the dielectric rod. The solution of the Green function problem for excitation of the symmetric longitudinal mode (TM01) is performed by numerical integration. Using this method the frequency ranges over which the rod guides and the associated attenuation are clearly seen. The effective medium model readily allows for variation of the sphere size and separation, and can be taken to the limit where instead of a chain of spheres we have a solid Noble metal rod. This latter case turns out to be the optimal for minimizing the attenuation of the guided wave. Future work is proposed to simulate the chain of photonic nanospheres and the nanowire using finite-difference time-domain to verify observed guided behavior in the Green's function method devised in this thesis and to simulate the proposed nanosensing devices.
ContributorsHale, Paul (Author) / Diaz, Rodolfo E (Thesis advisor) / Goodnick, Stephen (Committee member) / Aberle, James T., 1961- (Committee member) / Palais, Joseph (Committee member) / Arizona State University (Publisher)
Created2013
151253-Thumbnail Image.png
Description
Multiport antennas offer greater design flexibility than traditional one-port designs. An antenna array is a special case of a multiport antenna. If the antenna's inter-element spacing is electrically small, the antenna is capable of achieving superdirectivity. Superdirective antenna arrays are known to be narrow band and have low radiation resistance

Multiport antennas offer greater design flexibility than traditional one-port designs. An antenna array is a special case of a multiport antenna. If the antenna's inter-element spacing is electrically small, the antenna is capable of achieving superdirectivity. Superdirective antenna arrays are known to be narrow band and have low radiation resistance which leads to low radiation efficiency and high VSWR. However, by increasing the self-impedance of the antenna elements, the radiation resistance is increased but the bandwidth remains narrow. A design methodology is developed using the ability to superimpose electric fields and multi-objective optimization to design antenna feed networks. While the emphasis in this dissertation is on antenna arrays and superdirectivity, the design methodology is general and can be applied to other multiport antennas. The design methodology is used to design a multiport impedance-matching network and optimize both the input impedance and radiation pattern of a two-port superdirective antenna array. It is shown that the multiport impedance-matching network is capable of improving the input impedance of the antenna array while maintaining high directionality. The antenna design is critical for the methodology to improve the bandwidth and radiation characteristics of the array. To double the bandwidth of the two-port impedance matched superdirective antenna array, a three-port Yagi-Uda antenna design is demonstrated. The addition of the extra antenna element does not increase the footprint of the antenna array. The design methodology is then used to design a symmetrical antenna array capable of steering its main beam in two directions.
ContributorsArceo, Diana (Author) / Balanis, Constantine A (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Moeller, Karl (Committee member) / Palais, Joseph (Committee member) / Arizona State University (Publisher)
Created2012
155235-Thumbnail Image.png
Description
Articially engineered two-dimensional materials, which are widely known as

metasurfaces, are employed as ground planes in various antenna applications. Due to

their nature to exhibit desirable electromagnetic behavior, they are also used to design

waveguiding structures, absorbers, frequency selective surfaces, angular-independent

surfaces, etc. Metasurfaces usually consist of electrically small conductive planar

patches arranged in a

Articially engineered two-dimensional materials, which are widely known as

metasurfaces, are employed as ground planes in various antenna applications. Due to

their nature to exhibit desirable electromagnetic behavior, they are also used to design

waveguiding structures, absorbers, frequency selective surfaces, angular-independent

surfaces, etc. Metasurfaces usually consist of electrically small conductive planar

patches arranged in a periodic array on a dielectric covered ground plane. Holographic

Articial Impedance Surfaces (HAISs) are one such metasurfaces that are capable of

forming a pencil beam in a desired direction, when excited with surface waves. HAISs

are inhomogeneous surfaces that are designed by modulating its surface impedance.

This surface impedance modulation creates a periodical discontinuity that enables a

part of the surface waves to leak out into the free space leading to far-eld radia-

tion. The surface impedance modulation is based on the holographic principle. This

dissertation is concentrated on designing HAISs with

Desired polarization for the pencil beam

Enhanced bandwidth

Frequency scanning

Conformity to curved surfaces

HAIS designs considered in this work include both one and two dimensional mod-

ulations. All the designs and analyses are supported by mathematical models and

HFSS simulations.
ContributorsPandi, Sivaseetharaman (Author) / Balanis, Constantine A (Thesis advisor) / Palais, Joseph (Committee member) / Aberle, James T., 1961- (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2017
157906-Thumbnail Image.png
Description
Presented is a design approach and test of a novel compact waveguide that demonstrated the outer dimensions of a rectangular waveguide through the introduction of parallel raised strips, or flanges, which run the length of the rectangular waveguide along the direction of wave propagation. A 10GHz waveguide was created

Presented is a design approach and test of a novel compact waveguide that demonstrated the outer dimensions of a rectangular waveguide through the introduction of parallel raised strips, or flanges, which run the length of the rectangular waveguide along the direction of wave propagation. A 10GHz waveguide was created with outer dimensions of a=9.0mm and b=3.6mm compared to a WR-90 rectangular waveguide with outer dimensions of a=22.86mm and b=10.16mm which the area is over 7 times the area. The first operating bandwidth for a hollow waveguide of dimensions a=9.0mm and b=3.6mm starts at 16.6GHz a 40% reduction in cutoff frequency.

The prototyped and tested compact waveguide demonstrated an operating close to the predicted 2GHz with predicted vs measured injection loss generally within 0.25dB and an overall measured injection loss of approximately 4.67dB/m within the operating bandwidth.
ContributorsJones, Jimmy, Ph.D (Author) / Pan, George (Thesis advisor) / Palais, Joseph (Committee member) / Aberle, James T., 1961- (Committee member) / Young, William (Committee member) / Arizona State University (Publisher)
Created2019
158576-Thumbnail Image.png
Description
Since the advent of High Impedance Surfaces (HISs) and metasurfaces, researchers

have proposed many low profile antenna configurations. HISs possess in-phase reflection, which reinforces the radiation, and enhances the directivity and matching bandwidth of radiating elements. Most of the proposed dipole and loop element designs that have used HISs as a

Since the advent of High Impedance Surfaces (HISs) and metasurfaces, researchers

have proposed many low profile antenna configurations. HISs possess in-phase reflection, which reinforces the radiation, and enhances the directivity and matching bandwidth of radiating elements. Most of the proposed dipole and loop element designs that have used HISs as a ground plane, have attained a maximum directivity of 8 dBi. While HISs are more attractive ground planes for low profile antennas, these HISs result in a low directivity as compared to PEC ground planes. Various studies have shown that Perfect Electric Conductor (PEC) ground planes are capable of achieving higher directivity, at the expense of matching efficiency, when the spacing

between the radiating element and the PEC ground plane is less than 0.25 lambda. To establish an efficient ground plane for low profile applications, PEC (Perfect Electric Conductor) and PMC (Perfect Magnetic Conductor) ground planes are examined in the vicinity of electric and magnetic radiating elements. The limitation of the two ground planes, in terms of radiation efficiency and the impedance matching, are discussed. Far-field analytical formulations are derived and the results are compared with full-wave EM simulations performed using the High-Frequency Structure Simulator (HFSS). Based on PEC and PMC designs, two engineered ground planes are proposed.

The designed ground planes depend on two metasurface properties; namely in-phase reflection and excitation of surface waves. Two ground plane geometries are considered. The first one is designed for a circular loop radiating element, which utilizes a

circular HIS ring deployed on a circular ground plane. The integration of the loop element with the circular HIS ground plane enhances the maximum directivity up to 10.5 dB with a 13% fractional bandwidth. The second ground plane is designed for a square loop radiating element. Unlike the first design, rectangular HIS patches are utilized to control the excitation of surface waves in the principal planes. The final design operates from 3.8 to 5 GHz (27% fractional bandwidth) with a stable broadside maximum realized gain up to 11.9 dBi. To verify the proposed designs, a prototype was fabricated and measurements were conducted. A good agreement between simulations and measurements was observed. Furthermore, multiple square ring elements are embedded within the periodic patches to form a surface wave planar antenna array. Linear and circular polarizations are proposed and compared to a conventional square ring array. The implementation of periodic patches results in a better matching bandwidth and higher broadside gain compared to a conventional array.
ContributorsAlharbi, Mohammed (Author) / Balanis, Constantine A (Thesis advisor) / Aberle, James T (Committee member) / Palais, Joseph (Committee member) / Trichopoulos, Georgios C (Committee member) / Arizona State University (Publisher)
Created2020