## Matching Items (13)

##### Filtering by

- All Subjects: Electromagnetism
- Creators: Aberle, James T., 1961-

We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin’s procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield…

We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin’s procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N^2) to O(N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.

Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by the electric and magnetic fields and is often limited by…

Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by the electric and magnetic fields and is often limited by the number of turns of the coil. Kinetic inductance on the other hand is inversely proportional to the density of electrons or holes that exert inertia, the unit mass of the charge carriers and the momentum relaxation time of these charge carriers, all of which can be varied merely by modifying the material properties. Highly sensitive and broadband signal amplifiers often broaden the field of study in astrophysics. Quantum-noise limited travelling wave kinetic inductance parametric amplifiers offer a noise figure of around 0.5 K ± 0.3 K as compared to 20 K in HEMT signal amplifiers and can be designed to operate to cover the entire W-band (75 GHz – 115 GHz).The research cumulating to this thesis involves applying and exploiting kinetic inductance properties in designing a W-band orthogonal mode transducer, quadratic gain phase shifter with a gain of ~49 dB over a meter of microstrip transmission line. The phase shifter will help in measuring the maximum amount of phase shift ∆ϕ_max (I) that can be obtained from half a meter transmission line which helps in predicting the gain of a travelling wave parametric amplifier. In another project, a microstrip to slot line transition is designed and optimized to operate at 150 GHz and 220 GHz frequencies, that is used as a part of horn antenna coupled microwave kinetic inductance detector proposed to operate from 138 GHz to 250 GHz. In the final project, kinetic inductance in a 2D electron gas (2DEG) is explored by design, simulation, fabrication and experimentation. A transmission line model of a 2DEG proposed by Burke (1999), is simulated and verified experimentally by fabricating a capacitvely coupled 2DEG mesa structure. Low temperature experiments were done at 77 K and 10 K with photo-doping the 2DEG. A circuit model of a 2DEG coupled co-planar waveguide model is also proposed and simulated.

Articially engineered two-dimensional materials, which are widely known as

metasurfaces, are employed as ground planes in various antenna applications. Due to

their nature to exhibit desirable electromagnetic behavior, they are also used to design

waveguiding structures, absorbers, frequency selective surfaces, angular-independent

surfaces, etc. Metasurfaces usually consist of electrically small conductive planar

patches arranged in a…

Articially engineered two-dimensional materials, which are widely known as

metasurfaces, are employed as ground planes in various antenna applications. Due to

their nature to exhibit desirable electromagnetic behavior, they are also used to design

waveguiding structures, absorbers, frequency selective surfaces, angular-independent

surfaces, etc. Metasurfaces usually consist of electrically small conductive planar

patches arranged in a periodic array on a dielectric covered ground plane. Holographic

Articial Impedance Surfaces (HAISs) are one such metasurfaces that are capable of

forming a pencil beam in a desired direction, when excited with surface waves. HAISs

are inhomogeneous surfaces that are designed by modulating its surface impedance.

This surface impedance modulation creates a periodical discontinuity that enables a

part of the surface waves to leak out into the free space leading to far-eld radia-

tion. The surface impedance modulation is based on the holographic principle. This

dissertation is concentrated on designing HAISs with

Desired polarization for the pencil beam

Enhanced bandwidth

Frequency scanning

Conformity to curved surfaces

HAIS designs considered in this work include both one and two dimensional mod-

ulations. All the designs and analyses are supported by mathematical models and

HFSS simulations.

A domain decomposition method for analyzing very large FDTD domains, hundreds of thousands of wavelengths long, is demonstrated by application to the problem of radar scattering in the maritime environment. Success depends on the elimination of artificial scattering from the “sky” boundary and is ensured by an ultra-high-performance absorbing termination…

A domain decomposition method for analyzing very large FDTD domains, hundreds of thousands of wavelengths long, is demonstrated by application to the problem of radar scattering in the maritime environment. Success depends on the elimination of artificial scattering from the “sky” boundary and is ensured by an ultra-high-performance absorbing termination which eliminates this reflection at angles of incidence as shallow as 0.03 degrees off grazing. The two-dimensional (2D) problem is used to detail the features of the method. The results are cross-validated by comparison to a parabolic equation (PE) method and surface integral equation method on a 1.7km sea surface problem, and to a PE method on propagation through an inhomogeneous atmosphere in a 4km-long space, both at X-band. Additional comparisons are made against boundary integral equation and PE methods from the literature in a 3.6km space containing an inhomogeneous atmosphere above a flat sea at S-band. The applicability of the method to the three-dimensional (3D) problem is shown via comparison of a 2D solution to the 3D solution of a corridor of sea. As a technical proof of the scalability of the problem with computational power, a 5m-wide, 2m-tall, 1050m-long 3D corridor containing 321.8 billion FDTD cells has been simulated at X-band. A plane wave spectrum analysis of the (X-band) scattered fields produced by a 5m-wide, 225m-long realistic 3D sea surface, and the 2D analog surface obtained by extruding a 2D sea along the width of the corridor, reveals the existence of out-of-plane 3D phenomena missed by the traditional 2D analysis. The realistic sea introduces random strong flashes and nulls in addition to a significant amount of cross-polarized field. Spatial integration using a dispersion-corrected Green function is used to reconstruct the scattered fields outside of the computational FDTD space which would impinge on a 3D target at the end of the corridor. The proposed final approach is a hybrid method where 2D FDTD carries the signal for the first tens of kilometers and the last kilometer is analyzed in 3D.

A new loop configuration capable of reducing power radiation magnitudes lower than conventional loops has been developed. This configuration is demonstrated for the case of two coaxial loops of 0.1 meter radius coupled via the magnetic reactive field. Utilizing electromagnetism theory, techniques from antenna design and a new near field…

A new loop configuration capable of reducing power radiation magnitudes lower than conventional loops has been developed. This configuration is demonstrated for the case of two coaxial loops of 0.1 meter radius coupled via the magnetic reactive field. Utilizing electromagnetism theory, techniques from antenna design and a new near field design initiative, the ability to design a magnetic field has been investigated by using a full wave simulation tool. The method for realization is initiated from first order physics model, ADS and onto a full wave situation tool for the case of a non-radiating helical loop. The exploration into the design of a magnetic near field while mitigating radiation power is demonstrated using an real number of twists to form a helical wire loop while biasing the integer twisted loop in a non-conventional moebius termination. The helix loop setup as a moebius loop convention can also be expressed as a shorted antenna scheme. The 0.1 meter radius helix antenna is biased with a 1MHz frequency that categorized the antenna loop as electrically small. It is then demonstrated that helical configuration reduces the electric field and mitigates power radiation into the far field. In order to compare the radiated power reduction performance of the helical loop a shielded loop is used as a baseline for comparison. The shielded loop system of the same geometric size and frequency is shown to have power radiation expressed as -46.1 dBm. The power radiated mitigation method of the helix loop reduces the power radiated from the two loop system down to -98.72 dBm.

Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low…

Semiconductor device scaling has kept up with Moore's law for the past decades and they have been scaling by a factor of half every one and half years. Every new generation of device technology opens up new opportunities and challenges and especially so for analog design. High speed and low gain is characteristic of these processes and hence a tradeoff that can enable to get back gain by trading speed is crucial. This thesis proposes a solution that increases the speed of sampling of a circuit by a factor of three while reducing the specifications on analog blocks and keeping the power nearly constant. The techniques are based on the switched capacitor technique called Correlated Level Shifting. A triple channel Cyclic ADC has been implemented, with each channel working at a sampling frequency of 3.33MS/s and a resolution of 14 bits. The specifications are compared with that based on a traditional architecture to show the superiority of the proposed technique.

Multiport antennas offer greater design flexibility than traditional one-port designs. An antenna array is a special case of a multiport antenna. If the antenna's inter-element spacing is electrically small, the antenna is capable of achieving superdirectivity. Superdirective antenna arrays are known to be narrow band and have low radiation resistance…

Multiport antennas offer greater design flexibility than traditional one-port designs. An antenna array is a special case of a multiport antenna. If the antenna's inter-element spacing is electrically small, the antenna is capable of achieving superdirectivity. Superdirective antenna arrays are known to be narrow band and have low radiation resistance which leads to low radiation efficiency and high VSWR. However, by increasing the self-impedance of the antenna elements, the radiation resistance is increased but the bandwidth remains narrow. A design methodology is developed using the ability to superimpose electric fields and multi-objective optimization to design antenna feed networks. While the emphasis in this dissertation is on antenna arrays and superdirectivity, the design methodology is general and can be applied to other multiport antennas. The design methodology is used to design a multiport impedance-matching network and optimize both the input impedance and radiation pattern of a two-port superdirective antenna array. It is shown that the multiport impedance-matching network is capable of improving the input impedance of the antenna array while maintaining high directionality. The antenna design is critical for the methodology to improve the bandwidth and radiation characteristics of the array. To double the bandwidth of the two-port impedance matched superdirective antenna array, a three-port Yagi-Uda antenna design is demonstrated. The addition of the extra antenna element does not increase the footprint of the antenna array. The design methodology is then used to design a symmetrical antenna array capable of steering its main beam in two directions.

Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and…

Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and independent Gaussian beam expansion, referred to as the frames. To simulate a reflector antenna in hundreds to thousands of wavelength, it requires 1E7 - 1E9 independent Gaussian beams. To this end, high performance parallel computing is implemented, based on Message Passing Interface (MPI). The second part of the dissertation includes the plane wave scattering from a target consisting of doubly periodic array of sharp conducting circular cones by the magnetic field integral equation (MFIE) via Coiflet based Galerkin's procedure in conjunction with the Floquet theorem. Owing to the orthogonally, compact support, continuity and smoothness of the Coiflets, well-conditioned impedance matrices are obtained. Majority of the matrix entries are obtained in the spectral domain by one-point quadrature with high precision. For the oscillatory entries, spatial domain computation is applied, bypassing the slow convergence of the spectral summation of the non-damping propagating modes. The simulation results are compared with the solutions from an RWG-MLFMA based commercial software, FEKO, and excellent agreement is observed.

There is a pervasive need in the defense industry for conformal, low-profile, efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared aperture multi-function radiators, while conformal antenna profiles minimize physical damage in army applications, reduce drag and weight penalties in airborne applications and reduce the visual and RF signatures of…

There is a pervasive need in the defense industry for conformal, low-profile, efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared aperture multi-function radiators, while conformal antenna profiles minimize physical damage in army applications, reduce drag and weight penalties in airborne applications and reduce the visual and RF signatures of the communication node. This dissertation is concerned with a new class of antennas called Magneto-Dielectric wire antennas (MDWA) that provide an ideal solution to this ever-present and growing need. Magneto-dielectric structures (μr>1;εr>1) can partially guide electromagnetic waves and radiate them by leaking off the structure or by scattering from any discontinuities, much like a metal antenna of the same shape. They are attractive alternatives to conventional whip and blade antennas because they can be placed conformal to a metallic ground plane without any performance penalty. A two pronged approach is taken to analyze MDWAs. In the first, antenna circuit models are derived for the prototypical dipole and loop elements that include the effects of realistic dispersive magneto-dielectric materials of construction. A material selection law results, showing that: (a) The maximum attainable efficiency is determined by a single magnetic material parameter that we term the hesitivity: Closely related to Snoek's product, it measures the maximum magnetic conductivity of the material. (b) The maximum bandwidth is obtained by placing the highest amount of μ" loss in the frequency range of operation. As a result, high radiation efficiency antennas can be obtained not only from the conventional low loss (low μ") materials but also with highly lossy materials (tan(δm)>>1). The second approach used to analyze MDWAs is through solving the Green function problem of the infinite magneto-dielectric cylinder fed by a current loop. This solution sheds light on the leaky and guided waves supported by the magneto-dielectric structure and leads to useful design rules connecting the permeability of the material to the cross sectional area of the antenna in relation to the desired frequency of operation. The Green function problem of the permeable prolate spheroidal antenna is also solved as a good approximation to a finite cylinder.

A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a…

A proposed visible spectrum nanoscale imaging method requires material with permittivity values much larger than those available in real world materials to shrink the visible wavelength to attain the desired resolution. It has been proposed that the extraordinarily slow propagation experienced by light guided along plasmon resonant structures is a viable approach to obtaining these short wavelengths. To assess the feasibility of such a system, an effective medium model of a chain of Noble metal plasmonic nanospheres is developed, leading to a straightforward calculation of the waveguiding properties. Evaluation of other models for such structures that have appeared in the literature, including an eigenvalue problem nearest neighbor approximation, a multi- neighbor approximation with retardation, and a method-of-moments method for a finite chain, show conflicting expectations of such a structure. In particular, recent publications suggest the possibility of regions of invalidity for eigenvalue problem solutions that are considered far below the onset of guidance, and for solutions that assume the loss is low enough to justify perturbation approximations. Even the published method-of-moments approach suffers from an unjustified assumption in the original interpretation, leading to overly optimistic estimations of the attenuation of the plasmon guided wave. In this work it is shown that the method of moments approach solution was dominated by the radiation from the source dipole, and not the waveguiding behavior claimed. If this dipolar radiation is removed the remaining fields ought to contain the desired guided wave information. Using a Prony's-method-based algorithm the dispersion properties of the chain of spheres are assessed at two frequencies, and shown to be dramatically different from the optimistic expectations in much of the literature. A reliable alternative to these models is to replace the chain of spheres with an effective medium model, thus mapping the chain problem into the well-known problem of the dielectric rod. The solution of the Green function problem for excitation of the symmetric longitudinal mode (TM01) is performed by numerical integration. Using this method the frequency ranges over which the rod guides and the associated attenuation are clearly seen. The effective medium model readily allows for variation of the sphere size and separation, and can be taken to the limit where instead of a chain of spheres we have a solid Noble metal rod. This latter case turns out to be the optimal for minimizing the attenuation of the guided wave. Future work is proposed to simulate the chain of photonic nanospheres and the nanowire using finite-difference time-domain to verify observed guided behavior in the Green's function method devised in this thesis and to simulate the proposed nanosensing devices.