Matching Items (2)
Filtering by

Clear all filters

157514-Thumbnail Image.png
Description
One of the critical issues in the U.S. healthcare sector is attributed to medications management. Mismanagement of medications can not only bring more unfavorable medical outcomes for patients, but also imposes avoidable medical expenditures, which can be partially accounted for the enormous $750 billion that the American healthcare system wastes

One of the critical issues in the U.S. healthcare sector is attributed to medications management. Mismanagement of medications can not only bring more unfavorable medical outcomes for patients, but also imposes avoidable medical expenditures, which can be partially accounted for the enormous $750 billion that the American healthcare system wastes annually. The lack of efficiency in medical outcomes can be due to several reasons. One of them is the problem of drug intensification: a problem associated with more aggressive management of medications and its negative consequences for patients.

To address this and many other challenges in regard to medications mismanagement, I take advantage of data-driven methodologies where a decision-making framework for identifying optimal medications management strategies will be established based on real-world data. This data-driven approach has the advantage of supporting decision-making processes by data analytics, and hence, the decision made can be validated by verifiable data. Thus, compared to merely theoretical methods, my methodology will be more applicable to patients as the ultimate beneficiaries of the healthcare system.

Based on this premise, in this dissertation I attempt to analyze and advance three streams of research that are influenced by issues involving the management of medications/treatments for different medical contexts. In particular, I will discuss (1) management of medications/treatment modalities for new-onset of diabetes after solid organ transplantations and (2) epidemic of opioid prescription and abuse.
ContributorsBoloori, Alireza (Author) / Saghafian, Soroush (Thesis advisor) / Fowler, John (Thesis advisor) / Gel, Esma (Committee member) / Cook, Curtiss B (Committee member) / Montgomery, Douglas C. (Committee member) / Arizona State University (Publisher)
Created2019
158661-Thumbnail Image.png
Description
The use of Red Blood Cells (RBCs) is a pillar of modern health care. Annually, the lives of hundreds of thousands of patients are saved through ready access to safe, fresh, blood-type compatible RBCs. Worldwide, hospitals have the common goal to better utilize available blood units by maximizing patients served

The use of Red Blood Cells (RBCs) is a pillar of modern health care. Annually, the lives of hundreds of thousands of patients are saved through ready access to safe, fresh, blood-type compatible RBCs. Worldwide, hospitals have the common goal to better utilize available blood units by maximizing patients served and reducing blood wastage. Managing blood is challenging because blood is perishable, its supply is stochastic and its demand pattern is highly uncertain. Additionally, RBCs are typed and patient compatibility is required.

This research focuses on improving blood inventory management at the hospital level. It explores the importance of hospital characteristics, such as demand rate and blood-type distribution in supply and demand, for improving RBC inventory management. Available inventory models make simplifying assumptions; they tend to be general and do not utilize available data that could improve blood delivery. This dissertation develops useful and realistic models that incorporate data characterizing the hospital inventory position, distribution of blood types of donors and the population being served.

The dissertation contributions can be grouped into three areas. First, simulations are used to characterize the benefits of demand forecasting. In addition to forecast accuracy, it shows that characteristics such as forecast horizon, the age of replenishment units, and the percentage of demand that is forecastable influence the benefits resulting from demand variability reduction.

Second, it develops Markov decision models for improved allocation policies under emergency conditions, where only the units on the shelf are available for dispensing. In this situation the RBC perishability has no impact due to the short timeline for decision making. Improved location-specific policies are demonstrated via simulation models for two emergency event types: mass casualty events and pandemic influenza.

Third, improved allocation policies under normal conditions are found using Markov decision models that incorporate temporal dynamics. In this case, hospitals receive replenishment and units age and outdate. The models are solved using Approximate Dynamic Programming with model-free approximate policy iteration, using machine learning algorithms to approximate value or policy functions. These are the first stock- and age-dependent allocation policies that engage substitution between blood type groups to improve inventory performance.
ContributorsDumkrieger, Gina (Author) / Mirchandani, Pitu B. (Thesis advisor) / Fowler, John (Committee member) / Wu, Teresa (Committee member) / Ju, Feng (Committee member) / Arizona State University (Publisher)
Created2020