Matching Items (7)
Filtering by

Clear all filters

152223-Thumbnail Image.png
Description
Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of the products can last years even decades. Much research has

Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of the products can last years even decades. Much research has been done in the ALT area and optimal design for ALT is a major topic. This dissertation consists of three main studies. First, a methodology of finding optimal design for ALT with right censoring and interval censoring have been developed and it employs the proportional hazard (PH) model and generalized linear model (GLM) to simplify the computational process. A sensitivity study is also given to show the effects brought by parameters to the designs. Second, an extended version of I-optimal design for ALT is discussed and then a dual-objective design criterion is defined and showed with several examples. Also in order to evaluate different candidate designs, several graphical tools are developed. Finally, when there are more than one models available, different model checking designs are discussed.
ContributorsYang, Tao (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Borror, Connie (Committee member) / Rigdon, Steve (Committee member) / Arizona State University (Publisher)
Created2013
152902-Thumbnail Image.png
Description
Accelerated life testing (ALT) is the process of subjecting a product to stress conditions (temperatures, voltage, pressure etc.) in excess of its normal operating levels to accelerate failures. Product failure typically results from multiple stresses acting on it simultaneously. Multi-stress factor ALTs are challenging as they increase the number of

Accelerated life testing (ALT) is the process of subjecting a product to stress conditions (temperatures, voltage, pressure etc.) in excess of its normal operating levels to accelerate failures. Product failure typically results from multiple stresses acting on it simultaneously. Multi-stress factor ALTs are challenging as they increase the number of experiments due to the stress factor-level combinations resulting from the increased number of factors. Chapter 2 provides an approach for designing ALT plans with multiple stresses utilizing Latin hypercube designs that reduces the simulation cost without loss of statistical efficiency. A comparison to full grid and large-sample approximation methods illustrates the approach computational cost gain and flexibility in determining optimal stress settings with less assumptions and more intuitive unit allocations.

Implicit in the design criteria of current ALT designs is the assumption that the form of the acceleration model is correct. This is unrealistic assumption in many real-world problems. Chapter 3 provides an approach for ALT optimum design for model discrimination. We utilize the Hellinger distance measure between predictive distributions. The optimal ALT plan at three stress levels was determined and its performance was compared to good compromise plan, best traditional plan and well-known 4:2:1 compromise test plans. In the case of linear versus quadratic ALT models, the proposed method increased the test plan's ability to distinguish among competing models and provided better guidance as to which model is appropriate for the experiment.

Chapter 4 extends the approach of Chapter 3 to ALT sequential model discrimination. An initial experiment is conducted to provide maximum possible information with respect to model discrimination. The follow-on experiment is planned by leveraging the most current information to allow for Bayesian model comparison through posterior model probability ratios. Results showed that performance of plan is adversely impacted by the amount of censoring in the data, in the case of linear vs. quadratic model form at three levels of constant stress, sequential testing can improve model recovery rate by approximately 8% when data is complete, but no apparent advantage in adopting sequential testing was found in the case of right-censored data when censoring is in excess of a certain amount.
ContributorsNasir, Ehab (Author) / Pan, Rong (Thesis advisor) / Runger, George C. (Committee member) / Gel, Esma (Committee member) / Kao, Ming-Hung (Committee member) / Montgomery, Douglas C. (Committee member) / Arizona State University (Publisher)
Created2014
154115-Thumbnail Image.png
Description
Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic

Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic response have more complicated structures. In the literature, the optimal design problem for some functional responses has been solved using genetic algorithm (GA) and approximate design methods. The goal of this dissertation is to develop fast computer algorithms for calculating exact D-optimal designs.



First, we demonstrated how the traditional exchange methods could be improved to generate a computationally efficient algorithm for finding G-optimal designs. The proposed two-stage algorithm, which is called the cCEA, uses a clustering-based approach to restrict the set of possible candidates for PEA, and then improves the G-efficiency using CEA.



The second major contribution of this dissertation is the development of fast algorithms for constructing D-optimal designs that determine the optimal sequence of stimuli in fMRI studies. The update formula for the determinant of the information matrix was improved by exploiting the sparseness of the information matrix, leading to faster computation times. The proposed algorithm outperforms genetic algorithm with respect to computational efficiency and D-efficiency.



The third contribution is a study of optimal experimental designs for more general functional response models. First, the B-spline system is proposed to be used as the non-parametric smoother of response function and an algorithm is developed to determine D-optimal sampling points of a spectrum variable. Second, we proposed a two-step algorithm for finding the optimal design for both sampling points and experimental settings. In the first step, the matrix of experimental settings is held fixed while the algorithm optimizes the determinant of the information matrix for a mixed effects model to find the optimal sampling times. In the second step, the optimal sampling times obtained from the first step is held fixed while the algorithm iterates on the information matrix to find the optimal experimental settings. The designs constructed by this approach yield superior performance over other designs found in literature.
ContributorsSaleh, Moein (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Runger, George C. (Committee member) / Kao, Ming-Hung (Committee member) / Arizona State University (Publisher)
Created2015
156337-Thumbnail Image.png
Description
Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical models to guide

decision-making. Despite these accomplishments, models are stylized representations

of real-world applications, reliant on accurate estimations from historical data to

Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical models to guide

decision-making. Despite these accomplishments, models are stylized representations

of real-world applications, reliant on accurate estimations from historical data to jus-

tify their underlying assumptions. To protect against unreliable estimations which

can adversely affect the decisions generated from applications dependent on fully-

realized models, techniques that are robust against misspecications are utilized while

still making use of incoming data for learning. Hence, new robust techniques are ap-

plied that (1) allow for the decision-maker to express a spectrum of pessimism against

model uncertainties while (2) still utilizing incoming data for learning. Two main ap-

plications are investigated with respect to these goals, the first being a percentile

optimization technique with respect to a multi-class queueing system for application

in hospital Emergency Departments. The second studies the use of robust forecasting

techniques in improving developing countries’ vaccine supply chains via (1) an inno-

vative outside of cold chain policy and (2) a district-managed approach to inventory

control. Both of these research application areas utilize data-driven approaches that

feature learning and pessimism-controlled robustness.
ContributorsBren, Austin (Author) / Saghafian, Soroush (Thesis advisor) / Mirchandani, Pitu (Thesis advisor) / Wu, Teresa (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2018
154894-Thumbnail Image.png
Description
The majority of research in experimental design has, to date, been focused on designs when there is only one type of response variable under consideration. In a decision-making process, however, relying on only one objective or criterion can lead to oversimplified, sub-optimal decisions that ignore important considerations. Incorporating multiple, and

The majority of research in experimental design has, to date, been focused on designs when there is only one type of response variable under consideration. In a decision-making process, however, relying on only one objective or criterion can lead to oversimplified, sub-optimal decisions that ignore important considerations. Incorporating multiple, and likely competing, objectives is critical during the decision-making process in order to balance the tradeoffs of all potential solutions. Consequently, the problem of constructing a design for an experiment when multiple types of responses are of interest does not have a clear answer, particularly when the response variables have different distributions. Responses with different distributions have different requirements of the design.

Computer-generated optimal designs are popular design choices for less standard scenarios where classical designs are not ideal. This work presents a new approach to experimental designs for dual-response systems. The normal, binomial, and Poisson distributions are considered for the potential responses. Using the D-criterion for the linear model and the Bayesian D-criterion for the nonlinear models, a weighted criterion is implemented in a coordinate-exchange algorithm. The designs are evaluated and compared across different weights. The sensitivity of the designs to the priors supplied in the Bayesian D-criterion is explored in the third chapter of this work.

The final section of this work presents a method for a decision-making process involving multiple objectives. There are situations where a decision-maker is interested in several optimal solutions, not just one. These types of decision processes fall into one of two scenarios: 1) wanting to identify the best N solutions to accomplish a goal or specific task, or 2) evaluating a decision based on several primary quantitative objectives along with secondary qualitative priorities. Design of experiment selection often involves the second scenario where the goal is to identify several contending solutions using the primary quantitative objectives, and then use the secondary qualitative objectives to guide the final decision. Layered Pareto Fronts can help identify a richer class of contenders to examine more closely. The method is illustrated with a supersaturated screening design example.
ContributorsBurke, Sarah Ellen (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie M. (Thesis advisor) / Anderson-Cook, Christine M. (Committee member) / Pan, Rong (Committee member) / Silvestrini, Rachel (Committee member) / Arizona State University (Publisher)
Created2016
189289-Thumbnail Image.png
Description
Reliability growth is not a new topic in either engineering or statistics and has been a major focus for the past few decades. The increasing level of high-tech complex systems and interconnected components and systems implies that reliability problems will continue to exist and may require more complex solutions. The

Reliability growth is not a new topic in either engineering or statistics and has been a major focus for the past few decades. The increasing level of high-tech complex systems and interconnected components and systems implies that reliability problems will continue to exist and may require more complex solutions. The most heavily used experimental designs in assessing and predicting a systems reliability are the "classical designs", such as full factorial designs, fractional factorial designs, and Latin square designs. They are so heavily used because they are optimal in their own right and have served superbly well in providing efficient insight into the underlying structure of industrial processes. However, cases do arise when the classical designs do not cover a particular practical situation. Repairable systems are such a case in that they usually have limitations on the maximum number of runs or too many varying levels for factors. This research explores the D-optimal design criteria as it applies to the Poisson Regression model on repairable systems, with a number of independent variables and under varying assumptions, to include the total time tested at a specific design point with fixed parameters, the use of a Bayesian approach with unknown parameters, and how the design region affects the optimal design. In applying experimental design to these complex repairable systems, one may discover interactions between stressors and provide better failure data. Our novel approach of accounting for time and the design space in the early stages of testing of repairable systems should, theoretically, in the final engineering design improve the system's reliability, maintainability and availability.
ContributorsTAYLOR, DUSTIN (Author) / Montgomery, Douglas (Thesis advisor) / Pan, Rong (Thesis advisor) / Rigdon, Steve (Committee member) / Freeman, Laura (Committee member) / Iquebal, Ashif (Committee member) / Arizona State University (Publisher)
Created2023
157561-Thumbnail Image.png
Description
Optimal design theory provides a general framework for the construction of experimental designs for categorical responses. For a binary response, where the possible result is one of two outcomes, the logistic regression model is widely used to relate a set of experimental factors with the probability of a positive

Optimal design theory provides a general framework for the construction of experimental designs for categorical responses. For a binary response, where the possible result is one of two outcomes, the logistic regression model is widely used to relate a set of experimental factors with the probability of a positive (or negative) outcome. This research investigates and proposes alternative designs to alleviate the problem of separation in small-sample D-optimal designs for the logistic regression model. Separation causes the non-existence of maximum likelihood parameter estimates and presents a serious problem for model fitting purposes.

First, it is shown that exact, multi-factor D-optimal designs for the logistic regression model can be susceptible to separation. Several logistic regression models are specified, and exact D-optimal designs of fixed sizes are constructed for each model. Sets of simulated response data are generated to estimate the probability of separation in each design. This study proves through simulation that small-sample D-optimal designs are prone to separation and that separation risk is dependent on the specified model. Additionally, it is demonstrated that exact designs of equal size constructed for the same models may have significantly different chances of encountering separation.

The second portion of this research establishes an effective strategy for augmentation, where additional design runs are judiciously added to eliminate separation that has occurred in an initial design. A simulation study is used to demonstrate that augmenting runs in regions of maximum prediction variance (MPV), where the predicted probability of either response category is 50%, most reliably eliminates separation. However, it is also shown that MPV augmentation tends to yield augmented designs with lower D-efficiencies.

The final portion of this research proposes a novel compound optimality criterion, DMP, that is used to construct locally optimal and robust compromise designs. A two-phase coordinate exchange algorithm is implemented to construct exact locally DMP-optimal designs. To address design dependence issues, a maximin strategy is proposed for designating a robust DMP-optimal design. A case study demonstrates that the maximin DMP-optimal design maintains comparable D-efficiencies to a corresponding Bayesian D-optimal design while offering significantly improved separation performance.
ContributorsPark, Anson Robert (Author) / Montgomery, Douglas C. (Thesis advisor) / Mancenido, Michelle V (Thesis advisor) / Escobedo, Adolfo R. (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2019