Matching Items (2)
Filtering by

Clear all filters

152768-Thumbnail Image.png
Description
In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact patient safety and hospital revenue. Any time instrumentation or devices are not available or are not fit for use, patient safety and revenue can be negatively impacted. One step of the instrument reprocessing cycle is sterilization. Steam sterilization is the sterilization method used for the majority of surgical instruments and is preferred to immediate use steam sterilization (IUSS) because terminally sterilized items can be stored until needed. IUSS Items must be used promptly and cannot be stored for later use. IUSS is intended for emergency situations and not as regular course of action. Unfortunately, IUSS is used to compensate for inadequate inventory levels, scheduling conflicts, and miscommunications. If IUSS is viewed as an adverse event, then monitoring IUSS incidences can help healthcare organizations meet patient safety goals and financial goals along with aiding in process improvement efforts. This work recommends statistical process control methods to IUSS incidents and illustrates the use of control charts for IUSS occurrences through a case study and analysis of the control charts for data from a health care provider. Furthermore, this work considers the application of data mining methods to IUSS occurrences and presents a representative example of data mining to the IUSS occurrences. This extends the application of statistical process control and data mining in healthcare applications.
ContributorsWeart, Gail (Author) / Runger, George C. (Thesis advisor) / Li, Jing (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2014
149475-Thumbnail Image.png
Description
The emergence of new technologies as well as a fresh look at analyzing existing processes have given rise to a new type of response characteristic, known as a profile. Profiles are useful when a quality variable is functionally dependent on one or more explanatory, or independent, variables. So, instead of

The emergence of new technologies as well as a fresh look at analyzing existing processes have given rise to a new type of response characteristic, known as a profile. Profiles are useful when a quality variable is functionally dependent on one or more explanatory, or independent, variables. So, instead of observing a single measurement on each unit or product a set of values is obtained over a range which, when plotted, takes the shape of a curve. Traditional multivariate monitoring schemes are inadequate for monitoring profiles due to high dimensionality and poor use of the information stored in functional form leading to very large variance-covariance matrices. Profile monitoring has become an important area of study in statistical process control and is being actively addressed by researchers across the globe. This research explores the understanding of the area in three parts. A comparative analysis is conducted of two linear profile-monitoring techniques based on probability of false alarm rate and average run length (ARL) under shifts in the model parameters. The two techniques studied are control chart based on classical calibration statistic and a control chart based on the parameters of a linear model. The research demonstrates that a profile characterized by a parametric model is more efficient monitoring scheme than one based on monitoring only the individual features of the profile. A likelihood ratio based changepoint control chart is proposed for detecting a sustained step shift in low order polynomial profiles. The test statistic is plotted on a Shewhart like chart with control limits derived from asymptotic distribution theory. The statistic is factored to reflect the variation due to the parameters in to aid in interpreting an out of control signal. The research also looks at the robust parameter design study of profiles, also referred to as signal response systems. Such experiments are often necessary for understanding and reducing the common cause variation in systems. A split-plot approach is proposed to analyze the profiles. It is demonstrated that an explicit modeling of variance components using generalized linear mixed models approach has more precise point estimates and tighter confidence intervals.
ContributorsGupta, Shilpa (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie M. (Thesis advisor) / Fowler, John (Committee member) / Prewitt, Kathy (Committee member) / Kulahci, Murat (Committee member) / Arizona State University (Publisher)
Created2010