Matching Items (2)
152052-Thumbnail Image.png
Description
Microwave (MW), thermal, and ultraviolet (UV) annealing were used to explore the response of Ag structures on a Ge-Se chalcogenide glass (ChG) thin film as flexible radiation sensors, and Te-Ti chalcogenide thin films as a material for diffusion barriers in microelectronics devices and processing of metallized Cu. Flexible resistive radiation

Microwave (MW), thermal, and ultraviolet (UV) annealing were used to explore the response of Ag structures on a Ge-Se chalcogenide glass (ChG) thin film as flexible radiation sensors, and Te-Ti chalcogenide thin films as a material for diffusion barriers in microelectronics devices and processing of metallized Cu. Flexible resistive radiation sensors consisting of Ag electrodes on a Ge20Se80 ChG thin film and polyethylene naphthalate substrate were exposed to UV radiation. The sensors were mounted on PVC tubes of varying radii to induce bending strains and annealed under ambient conditions up to 150 oC. Initial sensor resistance was measured to be ~1012 Ω; after exposure to UV radiation, the resistance was ~104 Ω. Bending strain and low temperature annealing had no significant effect on the resistance of the sensors. Samples of Cu on Te-Ti thin films were annealed in vacuum for up to 30 minutes and were stable up to 500 oC as revealed using Rutherford backscattering spectrometry (RBS) and four-point-probe analysis. X-ray diffractometry (XRD) indicates Cu grain growth up to 500 oC and phase instability of the Te-Ti barrier at 600 oC. MW processing was performed in a 2.45-GHz microwave cavity on Cu/Te-Ti films for up to 30 seconds to induce oxide growth. Using a calibrated pyrometer above the sample, the temperature of the MW process was measured to be below a maximum of 186 oC. Four-point-probe analysis shows an increase in resistance with an increase in MW time. XRD indicates growth of CuO on the sample surface. RBS suggests oxidation throughout the Te-Ti film. Additional samples were exposed to 907 J/cm2 UV radiation in order to ensure other possible electromagnetically induced mechanisms were not active. There were no changes observed using XRD, RBS or four point probing.
ContributorsRoos, Benjamin, 1990- (Author) / Alford, Terry L. (Thesis advisor) / Theodore, David (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2013
149459-Thumbnail Image.png
Description
Miedema's plot is used to select the Cu/metal barrier for Cu metallization.The Cu/metal barrier system selected should have positive heat of formation (Hf) so that there is no intermixing between the two layers. In this case, Ru is chosen as a potential candidate, and then the barrier properties of sputtered

Miedema's plot is used to select the Cu/metal barrier for Cu metallization.The Cu/metal barrier system selected should have positive heat of formation (Hf) so that there is no intermixing between the two layers. In this case, Ru is chosen as a potential candidate, and then the barrier properties of sputtered Cu/Ru thin films on thermally grown SiO2 substrates are investigated by Rutherford backscattering spectrometry (RBS), X-ray diffractometry (XRD), and electrical resistivity measurement. The Cu/Ru/SiO2 samples are analyzed prior to and after vacuum annealing at various temperatures of 400, 500, and 600 oC and at different interval of times of 0.5, 1 and 2 hrs for each temperature. Backscattering analysis indicate that both the copper and ruthenium thin films are thermally stable at high temperature of 600 oC, without any interdiffusion and chemical reaction between Cu and Ru thin films. No new phase formation is observed in any of the Cu/Ru/SiO2 samples. The XRD data indicate no new phase formation in any of the annealed Cu/Ru/SiO2 samples and confirmed excellent thermal stability of Cu on Ru layer. The electrical resistivity measurement indicated that the electrical resistivity value of the copper thin films annealed at 400, 500, and 600 oC is essentially constant and the copper films are thermally stable on Ru, no reaction occurs between copper films and Ru the layer. Cu/Ru/SiO2 multilayered thin film samples have been shown to possess good mechanical strength and adhesion between the Cu and Ru layers compared to the Cu/SiO2 thin film samples. The strength evaluation is carried out under static loading conditions such as nanoindentation testing. In this study, evaluation and comparison is donebased on the dynamic deformation behavior of Cu/Ru/SiO2 and Cu/SiO2 samples under scratch loading condition as a measure of tribological properties. Finally, the deformation behavior under static and dynamic loading conditions is understood using the scanning electron microscope (SEM) and the focused ionbeam imaging microscope (FIB) for topographical and cross-sectional imaging respectively.
ContributorsVenkatesh, Srilakshmi Hosadurga (Author) / Alford, Terry L. (Thesis advisor) / Krause, Stephen (Committee member) / Theodore, David (Committee member) / Arizona State University (Publisher)
Created2010