Matching Items (2)
Filtering by

Clear all filters

153112-Thumbnail Image.png
Description
Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters

Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters less than 100 nm in any external dimension. Examples of their use include titanium dioxide added as a pigment in products intended to be ingested by humans, silicon dioxide NPs are used in foods as an anticaking agent, and gold or iron oxide NPs can be used as vectors for drug delivery or contrast agents for specialized medical imaging. Although the intended use of these NPs is often to improve human health, it has come to the attention of investigators that NPs can have unintended or even detrimental effects on the organism. This work describes one such unintended effect of NP exposure from the perspective of exposure via the oral route. First, this Dissertation will explain an event referred to as brush border disruption that occurred after nanoparticles interacted with an in vitro model of the human intestinal epithelium. Second, this Dissertation will identify and characterize several consumer goods that were shown to contain titanium dioxide that are intended to be ingested. Third, this Dissertation shows that sedimentation due to gravity does not artifactually result in disruption of brush borders as a consequence of exposure to food grade titanium dioxide in vitro. Finally, this Dissertation will demonstrate that iron oxide nanoparticles elicited similar effects after exposure to an in vitro brush border expressing model of the human placenta. Together, these data suggest that brush border disruption is not an artifact of the material/cell culture model, but instead represents a bona fide biological response as a result of exposure to nanomaterial.
ContributorsFaust, James J (Author) / Capco, David G. (Thesis advisor) / Ugarova, Tatiana (Committee member) / Chandler, Douglas (Committee member) / Baluch, Page (Committee member) / Herman, Richard (Committee member) / Arizona State University (Publisher)
Created2014
Description
Some cyanobacteria, referred to as boring or euendolithic, are capable of excavating tunnels into calcareous substrates, both mineral and biogenic. The erosive activity of these cyanobacteria results in the destruction of coastal limestones and dead corals, the reworking of carbonate sands, and the cementation of microbialites. They thus link the

Some cyanobacteria, referred to as boring or euendolithic, are capable of excavating tunnels into calcareous substrates, both mineral and biogenic. The erosive activity of these cyanobacteria results in the destruction of coastal limestones and dead corals, the reworking of carbonate sands, and the cementation of microbialites. They thus link the biological and mineral parts of the global carbon cycle directly. They are also relevant for marine aquaculture as pests of mollusk populations. In spite of their importance, the mechanism by which these cyanobacteria bore remains unknown. In fact, boring by phototrophs is geochemically paradoxical, in that they should promote precipitation of carbonates, not dissolution. To approach this paradox experimentally, I developed an empirical model based on a newly isolated euendolith, which I characterized physiologically, ultrastructurally and phylogenetically (Mastigocoleus testarum BC008); it bores on pure calcite in the laboratory under controlled conditions. Mechanistic hypotheses suggesting the aid of accompanying heterotrophic bacteria, or the spatial/temporal separation of photosynthesis and boring could be readily rejected. Real-time Ca2+ mapping by laser scanning confocal microscopy of boring BC008 cells showed that boring resulted in undersaturation at the boring front and supersaturation in and around boreholes. This is consistent with a process of uptake of Ca2+ from the boring front, trans-cellular mobilization, and extrusion at the distal end of the filaments (borehole entrance). Ca2+ disequilibrium could be inhibited by ceasing illumination, preventing ATP generation, and, more specifically, by blocking P-type Ca2+ ATPase transporters. This demonstrates that BC008 bores by promoting calcite dissolution locally at the boring front through Ca2+ uptake, an unprecedented capacity among living organisms. Parallel studies using mixed microbial assemblages of euendoliths boring into Caribbean, Mediterranean, North and South Pacific marine carbonates, demonstrate that the mechanism operating in BC008 is widespread, but perhaps not universal.
ContributorsRamírez-Reinat, Edgardo L (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Chandler, Douglas (Committee member) / Farmer, Jack (Committee member) / Neuer, Susanne (Committee member) / Arizona State University (Publisher)
Created2010