Matching Items (4)

Filtering by

Clear all filters

151653-Thumbnail Image.png

Answer set programming and other computing paradigms

Description

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.

Contributors

Agent

Created

Date Created
  • 2013

154648-Thumbnail Image.png

Answer set programming modulo theories

Description

Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to

Knowledge representation and reasoning is a prominent subject of study within the field of artificial intelligence that is concerned with the symbolic representation of knowledge in such a way to facilitate automated reasoning about this knowledge. Often in real-world domains, it is necessary to perform defeasible reasoning when representing default behaviors of systems. Answer Set Programming is a widely-used knowledge representation framework that is well-suited for such reasoning tasks and has been successfully applied to practical domains due to efficient computation through grounding--a process that replaces variables with variable-free terms--and propositional solvers similar to SAT solvers. However, some domains provide a challenge for grounding-based methods such as domains requiring reasoning about continuous time or resources.

To address these domains, there have been several proposals to achieve efficiency through loose integrations with efficient declarative solvers such as constraint solvers or satisfiability modulo theories solvers. While these approaches successfully avoid substantial grounding, due to the loose integration, they are not suitable for performing defeasible reasoning on functions. As a result, this expressive reasoning on functions must either be performed using predicates to simulate the functions or in a way that is not elaboration tolerant. Neither compromise is reasonable; the former suffers from the grounding bottleneck when domains are large as is often the case in real-world domains while the latter necessitates encodings to be non-trivially modified for elaborations.

This dissertation presents a novel framework called Answer Set Programming Modulo Theories (ASPMT) that is a tight integration of the stable model semantics and satisfiability modulo theories. This framework both supports defeasible reasoning about functions and alleviates the grounding bottleneck. Combining the strengths of Answer Set Programming and satisfiability modulo theories enables efficient continuous reasoning while still supporting rich reasoning features such as reasoning about defaults and reasoning in domains with incomplete knowledge. This framework is realized in two prototype implementations called MVSM and ASPMT2SMT, and the latter was recently incorporated into a non-monotonic spatial reasoning system. To define the semantics of this framework, we extend the first-order stable model semantics by Ferraris, Lee and Lifschitz to allow "intensional functions" and provide analyses of the theoretical properties of this new formalism and on the relationships between this and existing approaches.

Contributors

Agent

Created

Date Created
  • 2016

149454-Thumbnail Image.png

Representing and reasoning about goals and policies of agents

Description

Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines

Goal specification is an important aspect of designing autonomous agents. A goal does not only refer to the set of states for the agent to reach. A goal also defines restrictions on the paths the agent should follow. Temporal logics are widely used in goal specification. However, they lack the ability to represent goals in a non-deterministic domain, goals that change non-monotonically, and goals with preferences. This dissertation defines new goal specification languages by extending temporal logics to address these issues. First considered is the goal specification in non-deterministic domains, in which an agent following a policy leads to a set of paths. A logic is proposed to distinguish paths of the agent from all paths in the domain. In addition, to address the need of comparing policies for finding the best ones, a language capable of quantifying over policies is proposed. As policy structures of agents play an important role in goal specification, languages are also defined by considering different policy structures. Besides, after an agent is given an initial goal, the agent may change its expectations or the domain may change, thus goals that are previously specified may need to be further updated, revised, partially retracted, or even completely changed. Non-monotonic goal specification languages that can make these changes in an elaboration tolerant manner are needed. Two languages that rely on labeling sub-formulas and connecting multiple rules are developed to address non-monotonicity in goal specification. Also, agents may have preferential relations among sub-goals, and the preferential relations may change as agents achieve other sub-goals. By nesting a comparison operator with other temporal operators, a language with dynamic preferences is proposed. Various goals that cannot be expressed in other languages are expressed in the proposed languages. Finally, plans are given for some goals specified in the proposed languages.

Contributors

Agent

Created

Date Created
  • 2010

150534-Thumbnail Image.png

Bridging the gap between classical logic based formalisms and logic programs

Description

Different logic-based knowledge representation formalisms have different limitations either with respect to expressivity or with respect to computational efficiency. First-order logic, which is the basis of Description Logics (DLs), is

Different logic-based knowledge representation formalisms have different limitations either with respect to expressivity or with respect to computational efficiency. First-order logic, which is the basis of Description Logics (DLs), is not suitable for defeasible reasoning due to its monotonic nature. The nonmonotonic formalisms that extend first-order logic, such as circumscription and default logic, are expressive but lack efficient implementations. The nonmonotonic formalisms that are based on the declarative logic programming approach, such as Answer Set Programming (ASP), have efficient implementations but are not expressive enough for representing and reasoning with open domains. This dissertation uses the first-order stable model semantics, which extends both first-order logic and ASP, to relate circumscription to ASP, and to integrate DLs and ASP, thereby partially overcoming the limitations of the formalisms. By exploiting the relationship between circumscription and ASP, well-known action formalisms, such as the situation calculus, the event calculus, and Temporal Action Logics, are reformulated in ASP. The advantages of these reformulations are shown with respect to the generality of the reasoning tasks that can be handled and with respect to the computational efficiency. The integration of DLs and ASP presented in this dissertation provides a framework for integrating rules and ontologies for the semantic web. This framework enables us to perform nonmonotonic reasoning with DL knowledge bases. Observing the need to integrate action theories and ontologies, the above results are used to reformulate the problem of integrating action theories and ontologies as a problem of integrating rules and ontologies, thus enabling us to use the computational tools developed in the context of the latter for the former.

Contributors

Agent

Created

Date Created
  • 2012